Skip to main content Accessibility help
×
Home

Sugar-sweetened beverage consumption and central and total adiposity in older children: a prospective study accounting for dietary reporting errors

  • Sherman J Bigornia (a1) (a2), Michael P LaValley (a3), Sabrina E Noel (a1), Lynn L Moore (a4), Andy R Ness (a5) (a6) and PK Newby (a1) (a7) (a8) (a9)...

Abstract

Objective

To determine the prospective relationship between changes in sugar-sweetened beverage (SSB) intake and central adiposity in older children.

Design

Dietary intakes of children were obtained by 3 d food records at ages 10 and 13 years. Waist circumference (WC) and weight and height to determine BMI were measured at 10 and 13 years and total body fat mass (TBFM) at 13 years by dual-energy X-ray absorptiometry. Analyses were conducted using multivariable linear regression. Reporting errors were measured and participants were categorized as under-, plausible and over-reporters of dietary intakes.

Setting

Community-based British cohort of children participating in the Avon Longitudinal Study of Parents and Children.

Results

Among 2455 older children, increased SSB consumption from ages 10 to 13 years was associated with higher WC (standardized β=0·020, P=0·19), BMI (β=0·028, P=0·03) and TBFM (β=0·017, P=0·20) at 13 years. Effects were strengthened among plausible dietary reporters (n 1059): WC (β=0·097, P<0·001), BMI (β=0·074, P<0·001) and TBFM (β=0·065, P=0·003). The association between change in SSB and WC was weakened, but remained statistically significant after accounting for BMI (β=0·042, P=0·02) and TBFM (β=0·048, P=0·01).

Conclusions

Higher consumption of SSB from ages 10 to 13 years was associated with a larger WC at age 13 years independent of differences in total adiposity. Accounting for dietary reporting errors strengthened associations. Our findings further support recommendations to limit intakes of SSB to reduce excess weight gain in children and suggest that SSB have an additional deleterious effect on central adiposity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sugar-sweetened beverage consumption and central and total adiposity in older children: a prospective study accounting for dietary reporting errors
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sugar-sweetened beverage consumption and central and total adiposity in older children: a prospective study accounting for dietary reporting errors
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sugar-sweetened beverage consumption and central and total adiposity in older children: a prospective study accounting for dietary reporting errors
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email bigornia@bu.edu

References

Hide All
1. Singh, AS, Mulder, C, Twisk, JW et al. (2008) Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev 9, 474488.
2. Calle, EE, Rodriguez, C, Walker-Thurmond, K et al. (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 348, 16251638.
3. Bergstrom, A, Pisani, P, Tenet, V et al. (2001) Overweight as an avoidable cause of cancer in Europe. Int J Cancer 91, 421430.
4. Guh, DP, Zhang, W, Bansback, N et al. (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9, 88.
5. Pischon, T, Boeing, H, Hoffmann, K et al. (2008) General and abdominal adiposity and risk of death in Europe. N Engl J Med 359, 21052120.
6. Canoy, D, Boekholdt, SM, Wareham, N et al. (2007) Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation 116, 29332943.
7. Huxley, R, Mendis, S, Zheleznyakov, E et al. (2010) Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk – a review of the literature. Eur J Clin Nutr 64, 1622.
8. Ogden, CL, Carroll, MD, Kit, BK et al. (2012) Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 307, 483490.
9. McCarthy, HD, Ellis, SM & Cole, TJ (2003) Central overweight and obesity in British youth aged 11–16 years: cross sectional surveys of waist circumference. BMJ 326, 624.
10. Li, C, Ford, ES, Mokdad, AH et al. (2006) Recent trends in waist circumference and waist-height ratio among US children and adolescents. Pediatrics 118, e1390e1398.
11. Kolle, E, Steene-Johannessen, J, Holme, I et al. (2009) Secular trends in adiposity in Norwegian 9-year-olds from 1999–2000 to 2005. BMC Public Health 9, 389.
12. Garnett, SP, Baur, LA & Cowell, CT (2011) The prevalence of increased central adiposity in Australian school children 1985 to 2007. Obes Rev 12, 887896.
13. Griffiths, C, Gately, P, Marchant, PR et al. (2013) A five year longitudinal study investigating the prevalence of childhood obesity: comparison of BMI and waist circumference. Public Health 127, 10901096.
14. Althuis, MD & Weed, DL (2013) Evidence mapping: methodologic foundations and application to intervention and observational research on sugar-sweetened beverages and health outcomes. Am J Clin Nutr 98, 755768.
15. Fiorito, LM, Marini, M, Francis, LA et al. (2009) Beverage intake of girls at age 5 y predicts adiposity and weight status in childhood and adolescence. Am J Clin Nutr 90, 935942.
16. Williams, CL, Strobino, BA & Brotanek, J (2007) Weight control among obese adolescents: a pilot study. Int J Food Sci Nutr 58, 217230.
17. Bray, GA (2013) Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr 4, 220225.
18. Ervin, RB & Ogden, CL (2013) Trends in Intake of Energy and Macronutrients in Children and Adolescents from 1999–2000 Through 2009–2010. NCHS Data Brief no. 113. Hyattsville, MD: National Center for Health Statistics.
19. Reedy, J & Krebs-Smith, SM (2010) Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. J Am Diet Assoc 110, 14771484.
20. Wang, YC, Bleich, SN & Gortmaker, SL (2008) Increasing caloric contribution from sugar-sweetened beverages and 100 % fruit juices among US children and adolescents, 1988–2004. Pediatrics 121, e1604e1614.
21. Brownell, KD, Farley, T, Willett, WC et al. (2009) The public health and economic benefits of taxing sugar-sweetened beverages. N Engl J Med 361, 15991605.
22. Popkin, BM, Adair, LS & Ng, SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70, 321.
23. Ludwig, DS, Peterson, KE & Gortmaker, SL (2001) Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 357, 505508.
24. Berkey, CS, Rockett, HR, Field, AE et al. (2004) Sugar-added beverages and adolescent weight change. Obes Res 12, 778788.
25. Phillips, SM, Bandini, LG, Naumova, EN et al. (2004) Energy-dense snack food intake in adolescence: longitudinal relationship to weight and fatness. Obes Res 12, 461472.
26. Striegel-Moore, RH, Thompson, D, Affenito, SG et al. (2006) Correlates of beverage intake in adolescent girls: the National Heart, Lung, and Blood Institute Growth and Health Study. J Pediatr 148, 183187.
27. Tam, CS, Garnett, SP, Cowell, CT et al. (2006) Soft drink consumption and excess weight gain in Australian school students: results from the Nepean study. Int J Obes (Lond) 30, 10911093.
28. Laska, MN, Murray, DM, Lytle, LA et al. (2012) Longitudinal associations between key dietary behaviors and weight gain over time: transitions through the adolescent years. Obesity (Silver Spring) 20, 118125.
29. Laurson, K, Eisenmann, JC & Moore, S (2008) Lack of association between television viewing, soft drinks, physical activity and body mass index in children. Acta Paediatr 97, 795800.
30. Libuda, L, Alexy, U, Sichert-Hellert, W et al. (2008) Pattern of beverage consumption and long-term association with body-weight status in German adolescents – results from the DONALD study. Br J Nutr 99, 13701379.
31. Mundt, CA, Baxter-Jones, AD, Whiting, SJ et al. (2006) Relationships of activity and sugar drink intake on fat mass development in youths. Med Sci Sports Exerc 38, 12451254.
32. Golding, J, Pembrey, M & Jones, R (2001) ALSPAC – the Avon Longitudinal Study of Parents and Children. I. Study methodology. Paediatr Perinat Epidemiol 15, 7487.
33. Fraser, A, Macdonald-Wallis, C, Tilling, K et al. (2012) Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol 42, 97110.
34. Price, GM, Paul, AA, Key, FB et al. (1995) Measurement of diet in a large national survey: comparison of computerized and manual coding of records in household measures. J Hum Nutr Diet 8, 417428.
35. Holland, B, Welch, AA, Unwin, ID et al. (editors) (1991) McCance & Widdowson’s The Composition of Foods, 5th ed. Cambridge: The Royal Society of Chemistry.
36. Johnson, L, Mander, AP, Jones, LR et al. (2007) Is sugar-sweetened beverage consumption associated with increased fatness in children? Nutrition 23, 557563.
37. Cole, TJ, Bellizzi, MC, Flegal, KM et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
38. Ness, AR, Leary, SD, Mattocks, C et al. (2007) Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med 4, e97.
39. Noel, SE, Mattocks, C, Emmett, P et al. (2010) Use of accelerometer data in prediction equations for capturing implausible dietary intakes in adolescents. Am J Clin Nutr 92, 14361445.
40. Huang, TT, Howarth, NC, Lin, BH et al. (2004) Energy intake and meal portions: associations with BMI percentile in US children. Obes Res 12, 18751885.
41. Morris, NM & Udry, JR (1980) Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adolesc 9, 271280.
42. Neter, J, Wasserman, W & Kutner, MH (1983) Variance inflation factors and other methods of detecting multicollinearity. In Applied Linear Regression Models, pp. 390392. Homewood, IL: Richard D. Irwin, Inc.
43. Collison, KS, Zaidi, MZ, Subhani, SN et al. (2010) Sugar-sweetened carbonated beverage consumption correlates with BMI, waist circumference, and poor dietary choices in school children. BMC Public Health 10, 234.
44. Ebbeling, CB, Feldman, HA, Chomitz, VR et al. (2012) A randomized trial of sugar-sweetened beverages and adolescent body weight. N Engl J Med 367, 14071416.
45. Sun, G, French, CR, Martin, GR et al. (2005) Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr 81, 7478.
46. Huang, TT, Roberts, SB, Howarth, NC et al. (2005) Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes Res 13, 12051217.
47. Savage, JS, Mitchell, DC, Smiciklas-Wright, H et al. (2008) Plausible reports of energy intake may predict body mass index in pre-adolescent girls. J Am Diet Assoc 108, 131135.
48. Mourao, DM, Bressan, J, Campbell, WW et al. (2007) Effects of food form on appetite and energy intake in lean and obese young adults. Int J Obes (Lond) 31, 16881695.
49. Ranawana, DV & Henry, CJ (2010) Are caloric beverages compensated for in the short-term by young adults? An investigation with particular focus on gender differences. Appetite 55, 137146.
50. Bigornia, SJ, LaValley, MP, Moore, LL et al. (2014) Dairy intakes at age 10 years do not adversely affect risk of excess adiposity at 13 years. J Nutr 144, 10811090.
51. Kratz, M, Baars, T & Guyenet, S (2013) The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur J Nutr 52, 124.
52. Stanhope, KL (2012) Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med 63, 329343.
53. Stanhope, KL, Schwarz, JM, Keim, NL et al. (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119, 13221334.
54. Maersk, M, Belza, A, Stodkilde-Jorgensen, H et al. (2012) Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95, 283289.
55. Silbernagel, G, Machann, J, Unmuth, S et al. (2011) Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. Br J Nutr 106, 7986.
56. Bray, GA & Popkin, BM (2013) Calorie-sweetened beverages and fructose: what have we learned 10 years later. Pediatr Obes 8, 242248.
57. Nago, ES, Lachat, CK, Dossa, RA et al. (2014) Association of out-of-home eating with anthropometric changes: a systematic review of prospective studies. Crit Rev Food Sci Nutr 54, 11031116.
58. Park, S, Blanck, HM, Sherry, B et al. (2012) Factors associated with sugar-sweetened beverage intake among United States high school students. J Nutr 142, 306312.
59. US Department of Agriculture & US Department of Health and Human Services (2010) Dietary Guidelines for Americans, 2010, 7th ed. Washington, DC: US Government Printing Office.

Keywords

Sugar-sweetened beverage consumption and central and total adiposity in older children: a prospective study accounting for dietary reporting errors

  • Sherman J Bigornia (a1) (a2), Michael P LaValley (a3), Sabrina E Noel (a1), Lynn L Moore (a4), Andy R Ness (a5) (a6) and PK Newby (a1) (a7) (a8) (a9)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed