Skip to main content Accessibility help
×
Home

Socio-economic and demographic characteristics associated with risk behaviour patterns for chronic non-communicable diseases in Brazil: data from the National Health Survey, 2013

  • Ana Paula P Duarte (a1), Paulo Rogério Melo Rodrigues (a1), Márcia Gonçalves Ferreira (a1), Diana Barbosa Cunha (a2), Naiara Ferraz Moreira (a3), Rosely Sichieri (a4) and Ana Paula Muraro (a5)...

Abstract

Objective

To identify risk behaviour patterns for chronic non-communicable diseases (NCD) in the Brazilian population and to investigate associated socio-economic and demographic factors.

Design

Factor analysis was used to identify patterns considering the following risk behaviours: consumption of soft drinks/artificial juice, sweet foods, red meat with apparent fat, chicken skin; inadequate consumption of fruits and vegetables; alcohol abuse; smoking; absence of physical activity during leisure time; and time spent watching television. The χ2 test was used to compare ratios. All analyses accounted for weighting factors and the study’s complex sampling design effect. The socio-economic and demographic variables evaluated were gender, age, schooling level and macro region of residence.

Setting

National Health Survey, a household survey with national representation, conducted in 2013 in Brazil.

Participants

Individuals (n 60202) aged 18 years or over.

Results

Four risk behaviour patterns were identified: ‘Physical inactivity in leisure time and Inadequate consumption of fruits and vegetables’, ‘Saturated fat’, ‘Alcohol and Smoking’ and ‘Sedentary behaviour and Sugar’, explaining 52·01 % of the total variance. Overall, greater adherence to ‘Saturated fat’ and ‘Alcohol and Smoking’ patterns was observed among men and those with lower education level. The ‘Sedentary behaviour and Sugar’ and ‘Physical inactivity in leisure time and Inadequate consumption of fruits and vegetables’ patterns had greater adherence among younger individuals, and the first was associated with higher education whereas the second with less education among individuals residing in the North and Northeast regions.

Conclusions

Risk behaviour patterns for NCD were heterogeneous, reflecting the socio-economic and demographic differences in Brazil.

Copyright

Corresponding author

*Corresponding author: Email muraroap@gmail.com

References

Hide All
1. World Health Organization (2010) Global Status Report on Noncommunicable Diseases 2010. Geneva: WHO.
2. World Health Organization (2011) Global Status Report on Noncommunicable Diseases 2011. Geneva: WHO.
3. World Health Organization (2013) Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. Geneva: WHO.
4. Spring, B, Moller, AC & Coons, MJ (2012) Multiple health behaviors: overview and implications. J Public Health (Oxf) 34, Suppl. 1, i3i10.10.1093/pubmed/fdr111
5. Luoto, R, Pratala, R & Lutela, A (1998) Impact of unhealthy behaviors on cardiovascular mortality in Finland, 1978–1993. Prev Med 27, 93100.10.1006/pmed.1997.0249
6. Leech, RM, McNaughton, SA & Timperio, A (2014) The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act 11, 4.10.1186/1479-5868-11-4
7. Fuglestad, PT, Jeffery, RW & Sherwood, NE (2012) Lifestyle patterns associated with diet, physical activity, body mass index and amount of recent weight loss in a sample of successful weight losers. Int J Behav Nutr Phys Act 9, 79.10.1186/1479-5868-9-79
8. Robinson, SM, Jameson, KA, Syddall, HE et al. (2013) Clustering of lifestyle risk factors and poor physical function in older adults: the Hertfordshire Cohort Study. J Am Geriatr Soc 61, 16841691.10.1111/jgs.12457
9. Steele, E, Claro, R & Monteiro, C (2014) Behavioural patterns of protective and risk factors for non-communicable diseases in Brazil. Public Health Nutr 17, 369375.10.1017/S1368980012005472
10. Ha, S, Choi, HR & Lee, YH (2017) Clustering of four major lifestyle risk factors among Korean adults with metabolic syndrome. PLoS One 12, e0174567.10.1371/journal.pone.0174567
11. Sena, EMS, Muraro, AP, Rodrigues, PRM et al. (2017) Patrones de comportamiento de riesgo para enfermedades crónicas y factores associados entre adolescentes. Nutr Hosp 34, 925933.
12. McAloney, K, Graham, H, Law, C et al. (2013) A scoping review of statistical approaches to the analysis of multiple health-related behaviors. Prev Med 56, 365371.10.1016/j.ypmed.2013.03.002
13. Lessa, I, Araújo, MJ, Magalhães, L et al. (2004) Simultaneidade de fatores de risco cardiovascular modificáveis na população adulta de Salvador–BA, Brasil. Rev Panam Salud Publica 16, 131137.10.1590/S1020-49892004000800009
14. Muniz, LC, Schneider, BC, Silva, ICM et al. (2012) Fatores de risco comportamentais acumulados para doenças cardiovasculares no sul do Brasil. Rev Saude Publica 46, 534542.10.1590/S0034-89102012005000021
15. Costa, FF, Benedet, J, Leal, DB et al. (2013) Agregação de fatores de risco para doenças e agravos crônicos não transmissíveis em adultos de Florianópolis, SC. Rev Bras Epidemiol 16, 398408.10.1590/S1415-790X2013000200015
16. D’Amico, MM & Souza, RKT (2014) Simultaneidade de fatores de risco cardiovascular controláveis: estudo de base populacional. Rev Bras Cardiol 27, 318326.
17. Loch, MR, Bortoletto, MSS, Souza, RKT et al. (2015) Simultaneidade de comportamento de risco para a saúde e fatores associados em estudo de base populacional. Cad Saude Colet 23, 180187.10.1590/1414-462X201500020045
18. Barros, MBA, Lima, MG, Medina, LPB et al. (2016) Social inequalities in health behaviors among Brazilian adults: National Health Survey, 2013. Int J Equity Health 15, 148.10.1186/s12939-016-0439-0
19. Azeredo, CM, Levy, RB, Peres, MFT et al. (2016) Patterns of health-related behaviours among adolescents: a cross-sectional study based on the National Survey of School Health Brazil 2012. BMJ Open 6, e011571.10.1136/bmjopen-2016-011571
20. Szwarcwald, CL, Malta, DC, Pereira, CA et al. (2014) Pesquisa Nacional de Saúde no Brasil: concepção e metodologia de aplicação. Cien Saude Colet 19, 333342.10.1590/1413-81232014192.14072012
21. Souza Júnior, PRB, Freitas, MPS, Antonaci, GA et al. (2015) Sampling design for the National Health Survey, Brazil 2013. Epidemiol Serv Saude 24, 207216.
22. Damacena, GN, Szwarcwald, CL, Malta, DC et al. (2015) O processo de desenvolvimento da Pesquisa Nacional de Saúde no Brasil 2013. Epidemiol Serv Saude 24, 197206.10.5123/S1679-49742015000200002
23. Marôco, J (2010) Análise estatísitca com o SPSS statistics, 6ª ed., pp. 469–528. Porto Alegre, RS: Artmed.
24. Kaiser, H (1974). An index of factor simplicity. Psychometrika 39, 3136.10.1007/BF02291575
25. Olinto, MTA (2007) Padrões alimentares: análise de componentes principais. In Epidemiologia Nutricional, pp. 213–225 [G Kac, R Sichieri and DP Gigantes, organizers]. Rio de Janeiro, RJ: Fiocruz–Atheneu.
26. Hofstetter, H, Dusseldorp, E, Empelen, PV et al. (2014) A primer on the use of cluster analysis or factor analysis to assess co-occurrence of risk behaviors. Prev Med 67, 141146.10.1016/j.ypmed.2014.07.007
27. Sociedade Brasileira de Cardiologia (2016) 7ª Diretriz Brasileira de Hipertensão. Arq Bras Cardiol 107, Suppl. 3, 186.
28. Instituto Brasileiro de Geografia e Estatística (2010) Pesquisa de Orçamentos Familiares 2008–2009: Antropometria e Estado Nutricional de Crianças, Adolescentes e Adultos do Brasil. Rio de Janeiro, RJ: IBGE.
29. Ikeda, N, Inoue, M, Iso, H et al (2012) Adult mortality attributable to preventable risk factors for non-communicable diseases and injuries in Japan: a comparative risk assessment. PLoS Med 9, e1001160.10.1371/journal.pmed.1001160
30. Garcia, LP & Freitas, LRS (2015) Consumo abusivo de álcool no Brasil: resultados da Pesquisa Nacional de Saúde 2013. Epidemiol Serv Saude 24, 227237.10.5123/S1679-49742015000200005
31. Villiers, AT, Copley, A, McGee, H et al. (2016) The relationship of tobacco and alcohol use with ageing self-perceptions in older people in Ireland. BMC Public Health 16, 627.10.1186/s12889-016-3158-y
32. Camões, M & Lopes, C (2007) Dietary intake and different types of physical activity: full-day energy expenditure, occupational and leisure-time. Public Health Nutr 11, 841848.10.1017/S1368980007001309
33. Estaquio, C, Pecollo, ND, Latino, PM et al. (2008). Socioeconomic differences in fruit and vegetable consumption among middle-aged French adults: adherence to the 5 a day recommendation. J Am Diet Assoc 108, 20212030.10.1016/j.jada.2008.09.011
34. Monsivais, P, Aggarwal, A & Drewnowski, A (2012) Are socioeconomic disparities in diet quality explained by diet cost? J Epidemiol Community Health 66, 530535.10.1136/jech.2010.122333
35. Mackeback, J, Brage, S, Forouhl, NG et al. (2015) Does the importance of dietary costs for fruit and vegetable intake vary by socioeconomic position? Br J Nutr 114, 14641470.
36. Instituto de Pesquisa Econômica Aplicada (2017) Atlas da Violência 2017. Fórum Brasileiro de Segurança Pública. Rio de Janeiro, RJ: IPEA.
37. Instituto Brasileiro de Geografia e Estatística (2017) Diretoria de Pesquisas, Estatística da Produção Pecuária – junho de 2017. Rio de Janeiro, RJ: IBGE.
38. Instituto Brasileiro de Geografia e Estatística (2016) Produção da Pecuária Municipal 2015. Vol. 43. Rio de Janeiro, RJ: IBGE.
39. Instituto Brasileiro de Geografia e Estatística (2011) Diretoria de Pesquisas, Coordenação de Trabalho e Rendimento. Pesquisa de Orçamentos Familiares 2008–2009. http://www.ibge.gov.br/home/xml/pof_2008_2009.shtm (accessed May 2017).
40. Santos, RD, Gagliardi, ACM, Xavier, HT et al. (2013) Sociedade Brasileira de Cardiologia. I Diretriz sobre o consumo de gorduras e saúde cardiovascular. Arq Bras Cardiol 100, Suppl. 3, 140.
41. Brasil, Ministério da Saúde, Agência Nacional de Saúde Suplementar (2017) Vigitel Brasil 2015 Saúde Suplementar: Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico. Brasília, DF: Ministério da Saúde.
42. Brasil, Ministério da Saúde, Agência Nacional de Saúde Suplementar (2017) Vigitel Brasil 2016 Saúde Suplementar: Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico. Brasília, DF: Ministério da Saúde.
43. World Health Organization (2014) Global Status Report on Alcohol and Health. Geneva: WHO.
44. Brasil, Secretaria Nacional de Política sobre Drogas (2010) I Levantamento Nacional sobre o Uso de Álcool, Tabaco e Outras Drogas entre Universitário das 27 Capitais Brasileiras. Brasília, DF: SENAD.
45. Anand, A & Roy, N (2016) Prevalence and determinants of co-use of alcohol and tobacco among mem in working age group (18–59 years) in India. Epidemiol Biostat Public Health 13, e116421.
46. Meader, N, King, K, Byrne, TM et al. (2016) A systematic review on the clustering and cooccurrence of multiple risk behaviours. BMC Public Health 16, 657665.10.1186/s12889-016-3373-6
47. Instituto Nacional de Câncer, Organização Pan-Americana da Saúde (2011) Pesquisa Especial de Tabagismo – PETab: Relatório Brasil. Rio de Janeiro, RJ: INCA.
48. Organisation for Economic Co-operation and Development (2015) Tackling Harmful Alcohol Use: Economics and Public Health Policy. Paris: OECD Publishing.
49. Heron, J, Macleod, J, Munafo, MR et al. (2012) Patterns of alcohol use in early adolescence predict problem use at age 16. Alcohol 47, 169177.10.1093/alcalc/agr156
50. Malta, DC, Vieira, ML, Szwarcwald, CL et al. (2015) Tendência de fumantes na população brasileira segundo a Pesquisa Nacional de Amostra de Domicílios 2008 e a Pesquisa Nacional de Saúde 2013. Rev Bras Epidemiol 18, Suppl. 2, 4556.10.1590/1980-5497201500060005
51. Cleland, VJ, Schmidt, MD, Dwyer, T et al. (2008) Television viewing and abdominal obesity in young adults: is the association mediated by food and beverage consumption during viewing time or reduced leisure-time physical activity? Am J Clin Nutr 87, 11481155.10.1093/ajcn/87.5.1148
52. Boulos, R, Vikre, EK, Oppenheimer, S et al. (2012) ObesiTV: how television is influencing the obesity epidemic. Physiol Behav 107, 146153.10.1016/j.physbeh.2012.05.022
53. Heinonen, I, Helajärvi, H, Pahkala, K et al. (2013) Sedentary behaviors and obesity in adults: the Cardiovascular Risk in Young Finns Study. BMJ Open 3, e002901.10.1136/bmjopen-2013-002901
54. Mielke, GI, Hallal, PC, Rodrigues, GBA et al. (2015) Prática de atividade física e hábito de assistir à televisão entre adultos no Brasil: Pesquisa Nacional de Saúde 2013. Epidemiol Serv Saude 24, 277286.10.5123/S1679-49742015000200010
55. Rehm, CD, Matte, TD, Wye, GV et al. (2008) Demographic and behavioral factors associated with daily sugar-sweetened soda consumption in New York city adults. J Urban Health 85, 375385.10.1007/s11524-008-9269-8
56. Claro, RM, Santos, MAS, Oliveira, TP et al. (2015) Consumo de alimentos não saudáveis relacionados a doenças crônicas não transmissíveis no Brasil: Pesquisa Nacional de Saúde, 2013. Epidemiol Serv Saude 24, 257265.10.5123/S1679-49742015000200008
57. Pereira, RA, Duffey, KJ, Sichieri, R et al. (2014) Sources of excessive saturated fat, trans fat and sugar consumption in Brazil: an analysis of the first Brazilian nationwide individual dietary survey. Public Health Nutr 17, 113121.10.1017/S1368980012004892

Keywords

Type Description Title
WORD
Supplementary materials

Duarte et al. supplementary material
Tables S1-S2

 Word (20 KB)
20 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed