Skip to main content Accessibility help
×
Home

Micronutrient intakes, micronutrient status and lipid profiles among young people consuming different amounts of breakfast cereals: further analysis of data from the National Diet and Nutrition Survey of Young People aged 4 to 18 years

  • Sigrid Gibson (a1)

Abstract

Objective:

To examine associations between breakfast cereal consumption and the dietary habits, nutrient intakes and nutritional status of young people, considering both nutrient adequacy and safety issues (fortification).

Methods:

Using archived data from 1688 children in the (British) National Diet and Nutrition Survey of Young People aged 4 to 18 years, nutrient intakes and status were compared across thirds of breakfast cereal consumption (T1 to T3), adjusted for age and energy intake. Cereals provided on average 2%, 6% and 12% of energy in T1, T2 and T3, respectively, for boys; 1%, 4% and 10%, respectively, for girls.

Results:

Intakes of iron, B vitamins and vitamin D were around 20–60% higher in T3 compared with T1, with significant linear relationships observed for iron, thiamin, riboflavin and folate (T1 < T2 < T3). After excluding low energy reporters and the unwell, 14% of girls had iron intakes below the Lower Reference Nutrient Intake and this varied fivefold between T1 and T3 (27%, 12% and 5%; P = 0.0001). High consumers of breakfast cereals (T3) had better folate, vitamin B12 and riboflavin status and lower total and low-density lipoprotein cholesterol. There was also an association with thiamin and vitamin B6 status in girls. However, iron status (haemoglobin, ferritin and transferrin saturation) was not significantly different between groups, possibly due to lower meat intakes in T3. Total iron intakes were within tolerable levels (maximum of 32 mg day−1 in one girl taking supplements).

Conclusions:

The nutritional benefits of breakfast cereals are demonstrated in status measurements as well as in nutrient intakes in this study. Concerns about excessive iron intakes from fortification appear unjustified.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Micronutrient intakes, micronutrient status and lipid profiles among young people consuming different amounts of breakfast cereals: further analysis of data from the National Diet and Nutrition Survey of Young People aged 4 to 18 years
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Micronutrient intakes, micronutrient status and lipid profiles among young people consuming different amounts of breakfast cereals: further analysis of data from the National Diet and Nutrition Survey of Young People aged 4 to 18 years
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Micronutrient intakes, micronutrient status and lipid profiles among young people consuming different amounts of breakfast cereals: further analysis of data from the National Diet and Nutrition Survey of Young People aged 4 to 18 years
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email sigridgibson@ntlworld.com

References

Hide All
1Serra-Majem, L. Vitamin and mineral intakes in European children. Is food fortification needed? Public Health Nutrition 2001; 4(1A): 101–7.
2Gregory, J, Lowe, S, National Diet and Nutrition Survey: Young People aged 4 to 18 years. Vol. 1. Report of the Diet and Nutrition Survey. Office of the Population Censuses and Surveys, Social Survey Division. London: HMSO, 2000.
3Gibson, SA, O'Sullivan, K. Breakfast cereal consumption patterns and nutrient intakes of British schoolchildren. Journal of the Royal Society of Health 1995; 115(6): 366–70.
4McNulty, H, Eaton-Evans, J, Cran, G, Woulahan, G, Boreham, C, Savage, JM, et al. Nutrient intakes and impact of fortified breakfast cereals in schoolchildren. Archives of Disease in Childhood 1996; 75(6): 474–81.
5Gibson, SA. Iron intake and iron status of preschool children: associations with breakfast cereals, vitamin C and meat. Public Health Nutrition 1999; 2(4): 521–8.
6Ortega, RM, Requejo, AM, Redondo, R, Lopez-Sobaler, AM, Andres, P, Ortega, A, et al. Influence of the intake of fortified breakfast cereals on dietary habits and nutritional status of Spanish schoolchildren. Annals of Nutrition, & Metabolism 1996; 40(3): 146–56.
7Bertrais, S, Polo Luque, ML, Preziosi, P, Fieux, B, Torra De Flot, M, Galan, P, et al. Contribution of ready-to-eat cereals to nutrition intakes in French adults and relations with corpulence. Annals of Nutrition & Metabolism 2000; 44(5–6): 249–55.
8Preziosi, P, Galan, P, Deheeger, M, Jacob, N, Drewnowski, A, Hercberg, S. Breakfast type, daily nutrient intakes and vitamin and mineral status of French children, adolescents, and adults. Journal of the American College of Nutrition 1999; 18(2): 171–8.
9Cuskelly, GJ, McNulty, H, Scott, JM. Effect of increasing dietary folate on red-cell folate: implications for prevention of neural tube defects. Lancet 1996; 347(9002): 657–9.
10Cuskelly, GJ, McNulty, H, Scott, JM. Fortification with low amounts of folic acid makes a significant difference in folate status in young women: implications for the prevention of neural tube defects. American Journal of Clinical Nutrition 1999; 70(2): 234–9.
11Ashwell, MA, ed. Iron. Nutritional and Physiological Significance British Nutrition Foundation Task Force. London: British Nutrition Foundation, 1995.
12Gregory, J, Collins, D, Davies, P, Hughes, J, Clarke, P, National Diet and Nutrition Survey: Children aged 1.5 to 4.5 years. Vol. 1. Report of the Diet and Nutrition Survey. Office of the Population Censuses and Surveys, Social Survey Division. London: HMSO, 1995.
13Fairweather-Tait, S, Fox, T, Wharf, SG, Eagles, J. The bioavailability of iron in different weaning foods and the enhancing effect of a fruit drink containing ascorbic acid. Pediatric Research 1995; 37(4): 389–94.
14Schumann, K. Safety aspects of iron in food. Annals of Nutrition & Metabolism 2001; 45(3): 91101.
15Whittaker, P, Tufaro, PR, Rader, JI. Iron and folate in fortified cereals. Journal of the American College of Nutrition 2001; 20(3): 247–54.
16Bellizzi, MC, Dietz, WH. Workshop on childhood obesity: summary of the discussion. American Journal of Clinical Nutrition 1999; 70(1): 173S–5S.
17Dietz, WH, Bellizzi, MC. Introduction: the use of body mass index to assess obesity in children. American Journal of Clinical Nutrition 1999; 70(1): 123S–5S.
18Cole, TJ, Bellizzi, MC, Flegal, KM, Dietz, WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. British Medical Journal 2000; 320(7244): 1240–3.
19Department of, Health. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. London: HMSO, 1991.
20Black, AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. International Journal of Obesity and Related Metabolic Disorders 2000; 24(9): 1119–30.
21Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press, 2001.
22Food Standards Agency. Safe Upper Levels of Vitamins and Minerals. Expert Group on Vitamins and Minerals. London: The Stationery Office, 2003.
23Kato, I, Dnistrian, AM, Schwartz, M, Toniolo, P, Koenig, K, Shore, RE, et al. Risk of iron overload among middle-aged women. International Journal for Vitamin and Nutrition Research 2000; 70(3): 119–25.
24Walter, P. Towards ensuring the safety of vitamins and minerals. Toxicology Letters 2001; 120(1–3): 83–7.
25Marx, JJ. Iron deficiency in developed countries: prevalence, influence of lifestyle factors and hazards of prevention. European Journal of Clinical Nutrition 1997; 51(8): 491–4.
26Hulten, L, Gramatkovski, E, Gleerup, A, Hallberg, L. Iron absorption from the whole diet. Relation to meal composition, iron requirements and iron stores. European Journal of Clinical Nutrition 1995; 49(11): 794808.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed