Skip to main content Accessibility help
×
Home

Interactions between genetic variants of folate metabolism genes and lifestyle affect plasma homocysteine concentrations in the Boston Puerto Rican population

  • Tao Huang (a1) (a2) (a3), Katherine L Tucker (a4), Yu-Chi Lee (a2), Jimmy W Crott (a2), Laurence D Parnell (a2), Jian Shen (a2), Caren E Smith (a2), Jose M Ordovas (a2), Duo Li (a1) (a3) and Chao-Qiang Lai (a2)...

Abstract

Objective

To investigate genetic and lifestyle factors and their interactions on plasma homocysteine (Hcy) concentrations in the Boston Puerto Rican population.

Design

Cross-sectional study. Plasma concentrations of Hcy, folate, vitamin B12 and pyridoxal phosphate were measured, and genetic polymorphisms were determined. Data on lifestyle factors were collected in interviews.

Setting

A population survey of health and nutritional measures.

Subjects

A total of 994 Puerto Rican men and women residing in the Boston metropolitan area.

Results

Smoking status was positively associated with plasma Hcy. Genetic polymorphisms MTHFR 677C→T, FOLH1 1561C→T, FOLH1 rs647370 and PCFT 928A→G interacted significantly with smoking for Hcy. MTHFR 1298A→C (P = 0·040) and PCFT 928A→G (P = 0·002) displayed significant interactions with alcohol intake in determining plasma Hcy. Subjects with PCFT 928GG genotype had significantly higher plasma Hcy concentrations compared with carriers of the A allele (AA+AG; P = 0·030) among non-drinking subjects. When consuming alcohol, GG subjects had lower plasma Hcy levels compared with AA+AG subjects. Physical activity interacted significantly with MTR 2756A→G in determining plasma Hcy (P for interaction = 0·002). Smoking interacted with physical activity for plasma Hcy (P for interaction = 0·023).

Conclusions

Smoking and drinking were associated plasma Hcy concentrations. Genetic variants involved in folate metabolism further modify the effects of lifestyle on plasma Hcy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interactions between genetic variants of folate metabolism genes and lifestyle affect plasma homocysteine concentrations in the Boston Puerto Rican population
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interactions between genetic variants of folate metabolism genes and lifestyle affect plasma homocysteine concentrations in the Boston Puerto Rican population
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interactions between genetic variants of folate metabolism genes and lifestyle affect plasma homocysteine concentrations in the Boston Puerto Rican population
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email chaoqiang.lai@ars.usda.gov; duoli@zju.edu.cn

References

Hide All
1. McCully, KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56, 111128.
2. Kaul, S, Zadeh, AA & Shah, PK (2006) Homocysteine hypothesis for atherothrombotic cardiovascular disease: not validated. J Am Coll Cardiol 48, 914923.
3. Huang, T, Yuan, G, Zhang, Z et al. (2008) Cardiovascular pathogenesis in hyperhomocysteinemia. Asia Pac J Clin Nutr 17, 816.
4. Selhub, J (1999) Homocysteine metabolism. Annu Rev Nutr 19, 217246.
5. Kluijtmans, LA, Young, IS, Boreham, CA et al. (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101, 24832488.
6. Arnesen, E, Refsum, H, Bonaa, KH et al. (1995) Serum total homocysteine and coronary heart disease. Int J Epidemiol 24, 704709.
7. Stampfer, MJ, Malinow, MR, Willett, WC et al. (1992) A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 268, 877881.
8. Di Santolo, M, Banfi, G, Stel, G et al. (2009) Association of recreational physical activity with homocysteine, folate and lipid markers in young women. Eur J Appl Physiol 105, 111118.
9. McCully, KS & Wilson, RB (1975) Homocysteine theory of arteriosclerosis. Atherosclerosis 22, 215227.
10. Refsum, H, Ueland, PM, Nygard, O et al. (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49, 3162.
11. Selhub, J, Jacques, PF, Rosenberg, IH et al. (1999) Serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey (1991–1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 131, 331339.
12. Huang, T, Wahlqvist, ML & Li, D (2010) Docosahexaenoic acid decreases plasma homocysteine via regulating enzyme activity and mRNA expression involved in methionine metabolism. Nutrition 26, 112119.
13. Li, D, Mann, NJ & Sinclair, AJ (2006) A significant inverse relationship between concentrations of plasma homocysteine and phospholipid docosahexaenoic acid in healthy male subjects. Lipids 41, 8589.
14. Huang, T, Tucker, K, Lee, YC et al. (2010) MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations. Nutr Metab Cardiovasc Dis (Epublication ahead of print version).
15. Husemoen, LL, Thomsen, TF, Fenger, M et al. (2004) Effect of lifestyle factors on plasma total homocysteine concentrations in relation to MTHFR(C677T) genotype. Inter99 (7). Eur J Clin Nutr 58, 11421150.
16. Saw, SM, Yuan, JM, Ong, CN et al. (2001) Genetic, dietary, and other lifestyle determinants of plasma homocysteine concentrations in middle-aged and older Chinese men and women in Singapore. Am J Clin Nutr 73, 232239.
17. Vinukonda, G, Shaik Mohammad, N, Md Nurul Jain, J et al. (2009) Genetic and environmental influences on total plasma homocysteine and coronary artery disease (CAD) risk among South Indians. Clin Chim Acta 405, 127131.
18. Bleich, S, Bleich, K, Kropp, S et al. (2001) Moderate alcohol consumption in social drinkers raises plasma homocysteine levels: a contradiction to the ‘French paradox’? Alcohol Alcohol 36, 189192.
19. Chrysohoou, C, Panagiotakos, DB, Pitsavos, C et al. (2004) The associations between smoking, physical activity, dietary habits and plasma homocysteine levels in cardiovascular disease-free people: the ‘ATTICA’ study. Vasc Med 9, 117123.
20. Blom, HJ (1998) Determinants of plasma homocysteine. Am J Clin Nutr 67, 188189.
21. Frosst, P, Blom, HJ, Milos, R et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10, 111113.
22. DeVos, L, Chanson, A, Liu, Z et al. (2008) Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine, and DNA uracil concentrations. Am J Clin Nutr 88, 11491158.
23. Devlin, AM, Clarke, R, Birks, J et al. (2006) Interactions among polymorphisms in folate-metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am J Clin Nutr 83, 708713.
24. Vargas-Martinez, C, Ordovas, JM, Wilson, PW et al. (2002) The glutamate carboxypeptidase gene II (C>T) polymorphism does not affect folate status in the Framingham Offspring cohort. J Nutr 132, 11761179.
25. Lievers, KJ, Kluijtmans, LA, Boers, GH et al. (2002) Influence of a glutamate carboxypeptidase II (GCPII) polymorphism (1561C→T) on plasma homocysteine, folate and vitamin B(12) levels and its relationship to cardiovascular disease risk. Atherosclerosis 164, 269273.
26. Winkelmayer, WC, Eberle, C, Sunder-Plassmann, G et al. (2003) Effects of the glutamate carboxypeptidase II (GCP2 1561C>T) and reduced folate carrier (RFC1 80G>A) allelic variants on folate and total homocysteine levels in kidney transplant patients. Kidney Int 63, 22802285.
27. Qiu, A, Jansen, M, Sakaris, A et al. (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917928.
28. Lai, CQ, Parnell, LD, Troen, AM et al. (2010) MAT1A variants are associated with hypertension, stroke, and markers of DNA damage and are modulated by plasma vitamin B-6 and folate. Am J Clin Nutr 91, 13771386.
29. Tucker, KL, Mattei, J, Noel, SE et al. (2010) The Boston Puerto Rican Health Study, a longitudinal cohort study on health disparities in Puerto Rican adults: challenges and opportunities. BMC Public Health 10, 107.
30. Tucker, KL, Bianchi, LA, Maras, J et al. (1998) Adaptation of a food frequency questionnaire to assess diets of Puerto Rican and non-Hispanic adults. Am J Epidemiol 148, 507518.
31. Smith, CE, Tucker, KL, Yiannakouris, N et al. (2008) Perilipin polymorphism interacts with dietary carbohydrates to modulate anthropometric traits in Hispanics of Caribbean origin. J Nutr 138, 18521858.
32. Lee, IM & Paffenbarger, RS (1998) Physical activity and stroke incidence – The Harvard Alumni Health Study. Stroke 29, 20492054.
33. Lai, CQ, Tucker, KL, Parnell, LD et al. (2008) PPARGC1A variation associated with DNA damage, diabetes, and cardiovascular diseases: the Boston Puerto Rican Health Study. Diabetes 57, 809816.
34. Araki, A & Sako, Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422, 4352.
35. Camp, VM, Chipponi, J & Faraj, BA (1983) Radioenzymatic assay for direct measurement of plasma pyridoxal 5′-phosphate. Clin Chem 29, 642644.
36. Price, AL, Patterson, NJ, Plenge, RM et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904909.
37. Lai, CQ, Tucker, KL, Choudhry, S et al. (2009) Population admixture associated with disease prevalence in the Boston Puerto Rican health study. Hum Genet 125, 199209.
38. Nygard, O, Vollset, SE, Refsum, H et al. (1995) Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA 274, 15261533.
39. Stein, JH, Bushara, M, Bushara, K et al. (2002) Smoking cessation, but not smoking reduction, reduces plasma homocysteine levels. Clin Cardiol 25, 2326.
40. De Bree, A, Verschuren, WM, Kromhout, D et al. (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54, 599618.
41. de Bree, A, Verschuren, WM, Blom, HJ et al. (2001) Association between B vitamin intake and plasma homocysteine concentration in the general Dutch population aged 20–65 y. Am J Clin Nutr 73, 10271033.
42. Halsted, CH, Villanueva, JA, Devlin, AM et al. (2002) Metabolic interactions of alcohol and folate. J Nutr 132, 8 Suppl., 2367S2372S.
43. Sotgia, S, Carru, C, Caria, MA et al. (2007) Acute variations in homocysteine levels are related to creatine changes induced by physical activity. Clin Nutr 26, 444449.
44. Jacques, PF, Kalmbach, R, Bagley, PJ et al. (2002) The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr 132, 283288.
45. Husemoen, LL, Linneberg, A, Fenger, M et al. (2009) Changes in lifestyle, biological risk factors and total homocysteine in relation to MTHFR C677T genotype: a 5-year follow-up study. Eur J Clin Nutr 63, 12331240.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed