Skip to main content Accessibility help

How and why does discretionary food consumption change when we promote fruit and vegetables? Results from the ShopSmart randomised controlled trial

  • Rachelle S Opie (a1), Sarah A McNaughton (a1), David Crawford (a1), Gavin Abbott (a1) and Kylie Ball (a1)...



The present study aimed to identify whether discretionary food consumption declined in an intervention focused primarily on promoting fruit and vegetable consumption. We also aimed to identify potential mediators explaining intervention effects on discretionary food consumption.


Secondary analysis of data from the ShopSmart study, a randomised controlled trial involving a 6-month intervention promoting fruit and vegetable consumption. Linear regression models examined intervention effects on discretionary food consumption at intervention completion (T2). A half-longitudinal mediator analyses was performed to examine the potential mediating effect of personal and environmental factors on the association between the intervention effects and discretionary food consumption. Indirect (mediated) effects were tested by the product of coefficients method with bootstrapped se using Andrew Hayes’ PROCESS macro for SPSS.


Women were recruited via the Coles FlyBuys loyalty card database in socio-economically disadvantaged suburbs of Melbourne, Australia.


Analyses included 225 women (116 intervention and 109 control).


Compared with controls, intervention participants consumed fewer discretionary foods at T2, after adjusting for key confounders (B = −0·194, 95 % CI −0·378, −0·010 servings/d; P = 0·039). While some mediators were associated with the outcome (taste, outcome expectancies, self-efficacy, time constraints), there was no evidence that they mediated intervention effects.


The study demonstrated that a behavioural intervention promoting fruit and vegetable consumption among socio-economically disadvantaged participants was effective in reducing discretionary food intake. Although specific mediators were not identified, researchers should continue searching for mechanisms by which interventions have an effect to guide future programme design.


Corresponding author

*Corresponding author: Email


Hide All
1. World Health Organization (2011) Global Status Report on Noncommunicable Diseases: 2010. Geneva: WHO.
2. Di Cesare, M, Khang, YH, Asaria, P et al. (2013) Non-communicable diseases 3: inequalities in non-communicable diseases and effective responses. Lancet 381, 585597.10.1016/S0140-6736(12)61851-0
3. Livingstone, KM & McNaughton, SA (2018) Association between diet quality, dietary patterns and cardiometabolic health in Australian adults: a cross-sectional study. Nutr J 12, 119.
4. National Cancer Institute, Division of Cancer Control & Population Sciences (2015) Epidemiology and Genomics Research Program. Usual dietary intakes: food intakes, US population, 2007–10. (accessed September 2019).
5. Australian Bureau of Statistics (2014) 4364.0.55.007 – Australian Health Survey: Nutrition First Results – Foods and Nutrients, 2011–12. Discretionary foods. (accessed July 2018).
6. National Health and Medical Research Council (2013) Healthy Eating for Adults: Eat for Health and Wellbeing. (accessed September 2019).
7. Pomerleau, J, Lock, K, Knai, C et al. (2005) Interventions designed to increase adult fruit and vegetable intake can be effective: a systematic review of the literature. J Nutr 135, 24862495.10.1093/jn/135.10.2486
8. Haire-Joshu, D, Brownson, RC, Nanney, MS et al. (2003) Improving dietary behavior in African Americans: the Parents As Teachers High 5, Low Fat Program. Prev Med 36, 684691.10.1016/S0091-7435(03)00053-7
9. Havas, S, Anliker, J, Damron, D et al. (1998) Final results of the Maryland WIC 5-A-Day Promotion Program. Am J Public Health 88, 11611167.10.2105/AJPH.88.8.1161
10. Havas, S, Anliker, J, Greenberg, D et al. (2003) Final results of the Maryland WIC food for life program. Prev Med 37, 406416.10.1016/S0091-7435(03)00160-9
11. Langenberg, P, Ballesteros, M, Feldman, R et al. (2000) Psychosocial factors and intervention-associated changes in those factors as correlates of change in fruit and vegetable consumption in the Maryland WIC 5 a Day Promotion Program. Ann Behav Med 22, 307315.10.1007/BF02895667
12. Tredici, D, Joy, AB, Omelich, CL et al. (1998) Evaluation study of the California Expanded Food and Nutrition Education Program: 24-hour food recall data. J Am Diet Assoc 88, 185190.
13. Robinson, TN (2010) Stealth interventions for obesity prevention and control: motivating behavior change. In Obesity Prevention: The Role of Brain and Society on Individual Behavior, pp. 319327 [Dube, L, Bechara, A, Dagher, A et al., editors]. Amsterdam/Boston, MA: Academic Press.10.1016/B978-0-12-374387-9.00025-8
14. Mann, T, Tomiyama, AJ, Westling, E et al. (2007) Medicare’s search for effective obesity treatments: diets are not the answer. Am Psychol 62, 220233.10.1037/0003-066X.62.3.220
15. Bandura, A (1989) Human agency in social cognitive theory. Am Psychol 44, 11751184.10.1037/0003-066X.44.9.1175
16. Eertmans, A, Baeyens, F & Van den Bergh, O (2001) Food likes and their relative importance in human eating behaviour: review and preliminary suggestions for health promotion. Health Educ Res 16, 443456.10.1093/her/16.4.443
17. Newman, LP, Bolhuis, DP, Torres, SJ et al. (2016) Dietary fat restriction increases fat taste sensitivity in people with obesity. Obesity (Silver Spring) 24, 328334.10.1002/oby.21357
18. Snyder, LB (2007) Health communication campaigns and their impact on behavior. J Nutr Educ Behav 39, 2 Suppl., S32S40.10.1016/j.jneb.2006.09.004
19. Ball, K, McNaughton, SA, Le, HN et al. (2016) ShopSmart 4 Health: results of a randomized controlled trial of a behavioral intervention promoting fruit and vegetable consumption among socioeconomically disadvantaged women. Am J Clin Nutr 104, 436445.10.3945/ajcn.116.133173
20. Bandura, A (2004) Health promotion by social cognitive means. Health Educ Behav 31, 143164.10.1177/1090198104263660
21. Ball, K, McNaughton, SA, Le, H et al. (2013) ShopSmart 4 Health – protocol of a skills-based randomised controlled trial promoting fruit and vegetable consumption among socioeconomically disadvantaged women. BMC Publich Health 13, 466.10.1186/1471-2458-13-466
22. Lake, A, McNaughton, SA, Le, H et al. (2006) Food shopping and preparation among the 30-somethings: whose job is it? (The ASH30 study). Br Food J 108, 475486.10.1108/00070700610668441
23. Australian Bureau of Statistics (1998) National Nutrition Survey: User’s Guide, 1995. Canberra, ACT: Commonwealth of Australia.
24. Ball, K, Cleland, V, Salmon, J et al. (2013) Cohort profile: the resilience for eating and activity despite inequality (READI) study. Int J Epidemiol 42, 16291639.10.1093/ije/dys165
25. McNaughton, SA, Crawford, D, Ball, K et al. (2012) Understanding determinants of nutrition, physical activity and quality of life among older adults: the Wellbeing, Eating and Exercise for a Long Life (WELL) study. Health Qual Life Outcomes 10, 109.10.1186/1477-7525-10-109
26. National Health and Medical Research Council (2009) Australian guidelines to reduce health risks from drinking alcohol. (accessed September 2019).
27. Caspi, CE, Sorensen, G, Subramanian, SV et al. (2012) The local food environment and diet: a systematic review. Health Place 18, 11721187.10.1016/j.healthplace.2012.05.006
28. Sleddens, EFC, Kroeze, W, Kohl, LF et al. (2015) Correlates of dietary behaviour in adults: an umbrella review. Nutr Rev 73, 477499.10.1093/nutrit/nuv007
29. Brug, J (2008) Determinants of healthy eating: motivation, abilities and environmental opportunities. Fam Pract 25, Suppl. 1, i50i55.10.1093/fampra/cmn063
30. Cole, DA & Maxwell, SE (2003) Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. J Abnorm Psychol 112, 558577.10.1037/0021-843X.112.4.558
31. Hayes, AF (2012) PROCESS: a versatile computational tool for observed variable mediation, moderation, and conditional process modeling. (accessed September 2019).
32. Hill, JO (2009) Can a small-changes approach help address the obesity epidemic? A report of the Joint Task Force of the American Society for Nutrition, Institute of Food Technologists, and International Food Information Council. Am J Clin Nutr 89, 477484.10.3945/ajcn.2008.26566
33. Hall, KD, Sacks, G, Chandramohan, D et al. (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378, 826837.10.1016/S0140-6736(11)60812-X
34. National Institute of Health (1998) National Heart, Lung, and Blood Institute Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res 6, Suppl. 2, 51S209S.
35. Tyrovolas, S & Panagiotakos, DB (2010) The role of Mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: a systematic review. Maturitas 65, 122130.10.1016/j.maturitas.2009.07.003
36. Jacka, F, O’Neil, A, Opie, R et al. (2017) A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med 15, 23.10.1186/s12916-017-0791-y
37. Johnson, RK, Appel, LJ, Brands, M et al. (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120, 10111120.10.1161/CIRCULATIONAHA.109.192627
38. Sobal, J & Bisogni, CA (2009) Constructing food choice decisions. Ann Behav Med 38, Suppl. 1, S37S46.10.1007/s12160-009-9124-5
39. Bull, ER, Dombrowski, SU, McCleary, N et al. (2014) Are interventions for low-income groups effective in changing healthy eating, physical activity and smoking behaviours? A systematic review and meta-analysis. BMJ Open 4, e006046.10.1136/bmjopen-2014-006046
40. Sallis, JF, Owen, N & Fisher, EB (2008) Ecological models of health behaviour. In Health Behaviour and Health Education: Theory, Research, and Practice, pp. 465485 [Glanz, K, Rimer, BK and Viswanath, K, editors]. San Francisco, CA: Jossey-Bass.


How and why does discretionary food consumption change when we promote fruit and vegetables? Results from the ShopSmart randomised controlled trial

  • Rachelle S Opie (a1), Sarah A McNaughton (a1), David Crawford (a1), Gavin Abbott (a1) and Kylie Ball (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed