Skip to main content Accessibility help
×
Home

High-risk environments for eating foods surplus to requirements: a multilevel analysis of adolescents’ non-core food intake in the National Diet and Nutrition Survey (NDNS)

  • Zoi Toumpakari (a1), Kate Tilling (a2), Anne M Haase (a1) and Laura Johnson (a1)

Abstract

Objective

Interventions to reduce adolescents’ non-core food intake (i.e. foods high in fat and sugar) could target specific people or specific environments, but the relative importance of environmental contexts v. individual characteristics is unknown.

Design

Cross-sectional.

Setting

Data from 4d food diaries in the UK National Diet and Nutrition Survey (NDNS) 2008–2012 were analysed. NDNS food items were classified as ‘non-core’ based on fat and sugar cut-off points per 100g of food. Linear multilevel models investigated associations between ‘where’ (home, school, etc.) and ‘with whom’ (parents, friends, etc.) eating contexts and non-core food energy (kcal) per eating occasion (EO), adjusting for variables at the EO (e.g. time of day) and adolescent level (e.g. gender).

Participants

Adolescents (n 884) aged 11–18 years.

Results

Only 11 % of variation in non-core energy intake was attributed to differences between adolescents. In adjusted models, non-core food intake was 151 % higher (ratio; 95 % CI) in EO at ‘Eateries’ (2·51; 2·14, 2·95) and 88 % higher at ‘School’ (1·88; 1·65, 2·13) compared with ‘Home’. EO with ‘Friends’ (1·16; CI 1·03, 1·31) and ‘Family & friends’ (1·21; 1·07, 1·37) contained 16–21 % more non-core food compared with eating ‘Alone’. At the individual level, total energy intake and BMI, but not social class, gender or age, were weakly associated with more non-core energy intake.

Conclusions

Regardless of individual characteristics, adolescents’ non-core food consumption was higher outside the home, especially at eateries. Targeting specific eating contexts, not individuals, may contribute to more effective public health interventions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High-risk environments for eating foods surplus to requirements: a multilevel analysis of adolescents’ non-core food intake in the National Diet and Nutrition Survey (NDNS)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High-risk environments for eating foods surplus to requirements: a multilevel analysis of adolescents’ non-core food intake in the National Diet and Nutrition Survey (NDNS)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High-risk environments for eating foods surplus to requirements: a multilevel analysis of adolescents’ non-core food intake in the National Diet and Nutrition Survey (NDNS)
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email z.toumpakari@bristol.ac.uk

References

Hide All
1. Forouzanfar, MH , Alexander, L , Anderson, HR et al. (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 22872323.
2. Bates, B , Cox, L , Nicholson, SK et al. (2014) National Diet and Nutrition Survey: Results from Years 1, 2, 3 and 4 (combined) of the Rolling Programme (2008/2009–2011/2012). London: Public Health England; available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/310995/NDNS_Y1_to_4_UK_report.pdf
3. Llauradó, E , Albar, SA , Giralt, M et al. (2016) The effect of snacking and eating frequency on dietary quality in British adolescents. Eur J Nutr 55, 17891797.
4. Bates, B , Cox, L , Nicholson, SK et al. (2016) National Diet and Nutrition Survey. Results from Years 5 and 6 (combined) of the Rolling Programme (2012/2013–2013/2014). London: Public Health England; available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/551352/NDNS_Y5_6_UK_Main_Text.pdf
5. Adamson, A , Spence, S , Reed, L et al. (2013) School food standards in the UK: implementation and evaluation. Public Health Nutr 16, 968981.
6. World Health Organization (2012) Prioritizing Areas for Action in the Field of Population-Based Prevention of Childhood Obesity: A Set of Tools for Member States to Determine and Identify Priority Areas for Action. Geneva: WHO; available at http://apps.who.int/iris/bitstream/10665/80147/1/9789241503273_eng.pdf?ua=1
7. Toumpakari, Z , Haase, AM & Johnson, L (2016) Adolescents’ non-core food intake: a description of what, where and with whom adolescents consume non-core foods. Public Health Nutr 19, 16451653.
8. Public Health England, (2016) The Eatwell Guide Booklet. London: Public Health England; available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/528200/Eatwell_guide_booklet.pdf
9. National Health and Medical Research Council (2013) Eat for Health: Educator Guide. Canberra: NHMRC; available at https://www.eatforhealth.gov.au/sites/default/files/files/the_guidelines/n55b_eat_for_health_educators_guide.pdf
10. Briggs, L & Lake, AA (2011) Exploring school and home food environments: perceptions of 8–10-year-olds and their parents in Newcastle upon Tyne, UK. Public Health Nutr 14, 22272235.
11. Story, M , Neumark-Sztainer, D & French, S (2002) Individual and environmental influences on adolescent eating behaviors. J Am Diet Assoc 102, 3 Suppl., S40S51.
12. Mak, T , Prynne, C , Cole, D et al. (2012) Assessing eating context and fruit and vegetable consumption in children: new methods using food diaries in the UK National Diet and Nutrition Survey Rolling Programme. Int J Behav Nutr Phys Act 9, 126.
13. Liu, JL , Han, B & Cohen, DA (2015) Associations between eating occasions and places of consumption among adults. Appetite 87, 199204.
14. UK Data Archive (2010) National Diet and Nutrition Survey Years 1–4, 2008/09–2011/12. https://discover.ukdataservice.ac.uk/catalogue?sn=6533 (accessed April 2013).
15. Lennox, A , Fitt, E , Whitton, C et al. (2014) Appendix A: Dietary Data Collection and Editing. National Diet and Nutrition Survey Years 1–4 (2008/09–2011/12). London: Public Health England; available at https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-results-from-years-1-to-4-combined-of-the-rolling-programme-for-2008-and-2009-to-2011-and-2012
16. Bates, B , Lennox, A , Prentice, A et al. (2014) Appendix R: Main and Subsidiary Food Groups and Disaggregation Categories. National Diet and Nutrition Survey Years 1–4 (2008/09–2011/12). London: Public Health England; available at https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-results-from-years-1-to-4-combined-of-the-rolling-programme-for-2008-and-2009-to-2011-and-2012
17. Kellet, E , Smith, A & Schmerlaib, Y (1998) The Australian Guide to Healthy Eating: Background Information for Consumers. Canberra: Commonwealth Department of Health and Family Services; available at http://www.health.gov.au/internet/main/publishing.nsf/content/E384CFA588B74377CA256F190004059B/$File/fd-cons.pdf
18. Rangan, AM , Randall, D , Hector, DJ et al. (2008) Consumption of ‘extra’ foods by Australian children: types, quantities and contribution to energy and nutrient intakes. Eur J Clin Nutr 62, 356364.
19. Cole, TJ , Bellizzi, MC , Flegal, KM et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
20. Wijlaars, LPMM , Johnson, L , van Jaarsveld, CHM et al. (2011) Socioeconomic status and weight gain in early infancy. Int J Obes (Lond) 35, 963970.
21. Rabe-Hesketh, S & Skrondal, A (2012) Multilevel and Longitudinal Modelling Using Stata . vol. I: Continuous Responses, 3rd ed. College Station, TX: Stata Press.
22. Mendez, MA , Popkin, BM , Buckland, G et al. (2011) Alternative methods of accounting for underreporting and overreporting when measuring dietary intake–obesity relations. Am J Epidemiol 173, 448458.
23. Rennie, KL , Coward, A & Jebb, SA (2007) Estimating under-reporting of energy intake in dietary surveys using an individualised method. Br J Nutr 97, 11691176.
24. Johnson, L , van Jaarsveld, CHM & Wardle, J (2010) Individual and family environment correlates differ for consumption of core and non-core foods in children. Br J Nutr 105, 950959.
25. McGowan, L , Croker, H , Wardle, J et al. (2012) Environmental and individual determinants of core and non-core food and drink intake in preschool-aged children in the United Kingdom. Eur J Clin Nutr 66, 322328.
26. Woodruff, SJ , Hanning, RM & McGoldrick, K (2010) The influence of physical and social contexts of eating on lunch-time food intake among Southern Ontario, Canada, middle school students. J Sch Health 80, 421428.
27. Zoumas-Morse, C , Rock, CL , Sobo, EJ et al. (2001) Children’s patterns of macronutrient intake and associations with restaurant and home eating. J Am Diet Assoc 101, 923925.
28. Zarnowiecki, DM , Parletta, N & Dollman, J (2016) Socio-economic position as a moderator of 9–13-year-old children’s non-core food intake. Public Health Nutr 19, 5570.
29. Adams, J , Mytton, O , White, M et al. (2016) Why are some population interventions for diet and obesity more equitable and effective than others? The role of individual agency. PLoS Med 13, e1001990.
30. Rydell, SA , Harnack, LJ , Oakes, JM et al. (2008) Why eat at fast-food restaurants: reported reasons among frequent consumers. J Am Diet Assoc 108, 20662070.
31. Lachat, C , Nago, E , Verstraeten, R et al. (2012) Eating out of home and its association with dietary intake: a systematic review of the evidence. Obes Rev 13, 329346.
32. Church, S (2008) Trends in Portion Sizes in the UK – A Preliminary Review of Published Information. London: Food Standards Agency; available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.397.8604&rep=rep1&type=pdf
33. Anzman-Frasca, S , Dawes, F , Sliwa, S et al. (2014) Healthier side dishes at restaurants: an analysis of children’s perspectives, menu content, and energy impacts. Int J Behav Nutr Phys Act 11, 81.
34. Grieger, JA , Wycherley, TP , Johnson, BJ et al. (2016) Discrete strategies to reduce intake of discretionary food choices: a scoping review. Int J Behav Nutr Phys Act 13, 57.
35. Ebbeling, CB , Feldman, HA , Osganian, SK et al. (2006) Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study. Pediatrics 117, 673680.
36. Ebbeling, CB , Garcia-Lago, E , Leidig, MM et al. (2007) Altering portion sizes and eating rate to attenuate gorging during a fast food meal: effects on energy intake. Pediatrics 119, 869875.
37. Department for Education (2016) School Food in England: Departmental Advice for Governing Boards. London: Department for Education; available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/551813/School_food_in_England.pdf
38. Nicholas, J , Wood, L , Harper, C et al. (2013) The impact of the food-based and nutrient-based standards on lunchtime food and drink provision and consumption in secondary schools in England. Public Health Nutr 16, 10521065.
39. Evans, CEL , Cleghorn, CL , Greenwood, DC et al. (2010) A comparison of British school meals and packed lunches from 1990 to 2007: meta-analysis by lunch type. Br J Nutr 104, 474487.
40. Stevens, L , Nicholas, J , Wood, L et al. (2013) School lunches v. packed lunches: a comparison of secondary schools in England following the introduction of compulsory school food standards. Public Health Nutr 16, 10371042.
41. Macdiarmid, JI , Wills, WJ , Masson, LF et al. (2015) Food and drink purchasing habits out of school at lunchtime: a national survey of secondary school pupils in Scotland. Int J Behav Nutr Phys Act 12, 98.
42. Smith, D , Cummins, S , Clark, C et al. (2013) Does the local food environment around schools affect diet? Longitudinal associations in adolescents attending secondary schools in East London. BMC Public Health 13, 70.
43. de Castro, JM (1994) Family and friends produce greater social facilitation of food intake than other companions. Physiol Behav 56, 445455.
44. de Castro, JM (1995) Social facilitation of food intake in humans. Appetite 24, 260.
45. Salvy, S-J , Jarrin, D , Paluch, R et al. (2007) Effects of social influence on eating in couples, friends and strangers. Appetite 49, 9299.
46. McGuffin, LE , Price, RK , McCaffrey, TA et al. (2015) Parent and child perspectives on family out-of-home eating: a qualitative analysis. Public Health Nutr 18, 100111.
47. Tyrrell, RL , Greenhalgh, F , Hodgson, S et al. (2016) Food environments of young people: linking individual behaviour to environmental context. J Public Health 39, 95104.
48. Poti, JM & Popkin, BM (2011) Trends in energy intake among US children by eating location and food source, 1977–2006. J Am Diet Assoc 111, 11561164.
49. Thompson, FE & Subar, AF (2013) Dietary assessment methodology. In Nutrition in the Prevention and Treatment of Disease, 3rd ed., pp. 546 [AM Coulston, CJ Boushey and MG Ferruzzi, editors]. Waltham, MA: Academic Press/Elsevier.
50. Tooze, JA , Freedman, LS , Carroll, RJ et al. (2016) The impact of stratification by implausible energy reporting status on estimates of diet–health relationships. Biom J 58, 15381551.
51. Willett, WC (editor) (2013) Nature of variation in diet. In Nutritional Epidemiology, 3rd ed., pp. 3448. New York: Oxford University Press.
52. Penney, TL , Jones, NRV , Adams, J et al. (2017) Utilization of away-from-home food establishments, Dietary Approaches to Stop Hypertension dietary pattern, and obesity. Am J Prev Med 53, e155e163.

Keywords

Type Description Title
WORD
Supplementary materials

Toumpakari et al. supplementary material
Tables S1-S3

 Word (31 KB)
31 KB

High-risk environments for eating foods surplus to requirements: a multilevel analysis of adolescents’ non-core food intake in the National Diet and Nutrition Survey (NDNS)

  • Zoi Toumpakari (a1), Kate Tilling (a2), Anne M Haase (a1) and Laura Johnson (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed