Skip to main content Accessibility help
×
Home

Fish consumption prior to pregnancy and pregnancy outcomes in the National Birth Defects Prevention Study, 1997–2011

  • Renata H Benjamin (a1), Laura E Mitchell (a1), Mark A Canfield (a2), Adrienne T Hoyt (a2), Dejian Lai (a3), Tunu A Ramadhani (a2), Suzan L Carmichael (a4), Amy P Case (a2), D Kim Waller (a1) and the National Birth Defects Prevention Study (a1) (a2) (a3) (a4)...

Abstract

Objective

To evaluate the relationships between maternal fish consumption and pregnancy outcomes in a large, population-based sample of women in the USA.

Design

We collected average fish consumption prior to pregnancy using a modified version of the semi-quantitative Willett FFQ. We estimated adjusted OR (aOR) and 95 % CI for associations between different levels of fish consumption and preterm birth (<37 weeks), early preterm birth (<32 and <35 weeks) and small-for-gestational-age infants (SGA; <10th percentile).

Setting

The National Birth Defects Prevention Study (NBDPS).

Subjects

Control mother–infant pairs with estimated delivery dates between 1997 and 2011 (n 10 919).

Results

No significant associations were observed between fish consumption and preterm birth or early preterm birth (aOR = 0·7–1·0 and 0·7–0·9, respectively). The odds of having an SGA infant were elevated (aOR = 2·1; 95 % CI 1·2, 3·4) among women with daily fish consumption compared with women consuming fish less than once per month. No associations were observed between other levels of fish consumption and SGA (aOR = 0·8–1·0).

Conclusions

High intake of fish was associated with twofold higher odds of having an SGA infant, while moderate fish consumption prior to pregnancy was not associated with preterm or SGA. Our study, like many other studies in this area, lacked information regarding preparation methods and the specific types of fish consumed. Future studies should incorporate information on nutrient and contaminant contents, preparation methods and biomarkers to assess these relationships.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fish consumption prior to pregnancy and pregnancy outcomes in the National Birth Defects Prevention Study, 1997–2011
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fish consumption prior to pregnancy and pregnancy outcomes in the National Birth Defects Prevention Study, 1997–2011
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fish consumption prior to pregnancy and pregnancy outcomes in the National Birth Defects Prevention Study, 1997–2011
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email renata.h.benjamin@uth.tmc.edu

References

Hide All
1. Coletta, JM, Bell, SJ & Roman, AS (2010) Omega-3 fatty acids and pregnancy. Rev Obstet Gynecol 3, 163171.
2. Jensen, CL (2006) Effects of n-3 fatty acids during pregnancy and lactation. Am J Clin Nutr 83, 6 Suppl., 1452S1457S.
3. Mahaffey, KR, Clickner, RP & Jeffries, RA (2008) Methylmercury and omega-3 fatty acids: co-occurrence of dietary sources with emphasis on fish and shellfish. Environ Res 107, 2029.
4. Kris-Etherton, PM, Harris, WS & Appel, LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106, 27472757.
5. Oken, E & Bellinger, DC (2008) Fish consumption, methylmercury and child neurodevelopment. Curr Opin Pediatr 20, 178183.
6. Institute of Medicine (2007) Preterm Birth: Causes, Consequences, and Prevention. Washington DC: The National Academies Press; available at http://www.nap.edu/catalog/11622.html.
7. Centers for Disease Control and Prevention (2006) QuickStats: Percentage of small-for-gestational-age births, by race and Hispanic ethnicity – United States, 2005. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5750a5.htm (accessed October 2017).
8. Rogers, I, Emmett, P, Ness, A et al. (2004) Maternal fish intake in late pregnancy and the frequency of low birth weight and intrauterine growth retardation in a cohort of British infants. J Epidemiol Community Health 58, 486492.
9. Guldner, L, Monfort, C, Rouget, F et al. (2007) Maternal fish and shellfish intake and pregnancy outcomes: a prospective cohort study in Brittany, France. Environ Health 6, 33.
10. Olsen, SF, Osterdal, ML, Salvig, JD et al. (2006) Duration of pregnancy in relation to seafood intake during early and mid pregnancy: prospective cohort. Eur J Epidemiol 21, 749758.
11. Klebanoff, MA, Harper, M, Lai, Y et al. (2011) Fish consumption, erythrocyte fatty acids, and preterm birth. Obstet Gynecol 117, 10711077.
12. Leventakou, V, Roumeliotaki, T, Martinez, D et al. (2014) Fish intake during pregnancy, fetal growth, and gestational length in 19 European birth cohort studies. Am J Clin Nutr 99, 506516.
13. Haugen, M, Meltzer, HM, Brantsaeter, AL et al. (2008) Mediterranean-type diet and risk of preterm birth among women in the Norwegian Mother and Child Cohort Study (MoBa): a prospective cohort study. Acta Obstet Gynecol Scand 87, 319324.
14. Brantsaeter, AL, Englund-Ogge, L, Haugen, M et al. (2017) Maternal intake of seafood and supplementary long chain n-3 poly-unsaturated fatty acids and preterm delivery. BMC Pregnancy Childbirth 17, 41.
15. Olsen, SF & Secher, NJ (2002) Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ 324, 15.
16. Halldorsson, TI, Meltzer, HM, Thorsdottir, I et al. (2007) Is high consumption of fatty fish during pregnancy a risk factor for fetal growth retardation? A study of 44,824 Danish pregnant women. Am J Epidemiol 166, 687696.
17. Mendez, MA, Plana, E, Guxens, M et al. (2010) Seafood consumption in pregnancy and infant size at birth: results from a prospective Spanish cohort. J Epidemiol Community Health 64, 216222.
18. Mohanty, AF, Siscovick, DS, Williams, MA et al. (2016) Periconceptional seafood intake and pregnancy complications. Public Health Nutr 19, 17951803.
19. Food and Agriculture Organization of the United Nations (2016) The State of World Fisheries and Aquaculture, 2016. http://www.fao.org/3/a-i5555e.pdf (accessed July 2017).
20. Oken, E, Kleinman, KP, Olsen, SF et al. (2004) Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: results from a US pregnancy cohort. Am J Epidemiol 160, 774783.
21. Mohanty, AF, Thompson, ML, Burbacher, TM et al. (2015) Periconceptional seafood intake and fetal growth. Paediatr Perinat Epidemiol 29, 376387.
22. Yoon, PW, Rasmussen, SA, Lynberg, MC et al. (2001) The National Birth Defects Prevention Study. Public Health Rep 116, 3240.
23. Willett, WC, Sampson, L, Stampfer, MJ et al. (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 5165.
24. Duryea, EL, Hawkins, JS, McIntire, DD et al. (2014) A revised birth weight reference for the United States. Obstet Gynecol 124, 1622.
25. Colstrup, M, Mathiesen, ER, Damm, P et al. (2013) Pregnancy in women with type 1 diabetes: have the goals of St. Vincent declaration been met concerning foetal and neonatal complications? J Matern Fetal Neonatal Med 26, 16821686.
26. McCance, DR (2015) Diabetes in pregnancy. Best Pract Res Clin Obstet Gynaecol 29, 685699.
27. Peng, TY, Ehrlich, SF, Crites, Y et al. (2017) Trends and racial and ethnic disparities in the prevalence of pregestational type 1 and type 2 diabetes in Northern California: 1996–2014. Am J Obstet Gynecol 216, 177.e1e8.
28. Goldenberg, RL, Culhane, JF, Iams, JD et al. (2008) Epidemiology and causes of preterm birth. Lancet 371, 7584.
29. Carmichael, SL, Yang, W, Shaw, GM et al. (2013) Maternal dietary nutrient intake and risk of preterm delivery. Am J Perinatol 30, 579588.
30. Gould, JB, Madan, A, Qin, C et al. (2003) Perinatal outcomes in two dissimilar immigrant populations in the United States: a dual epidemiologic paradox. Pediatrics 111, e676e682.
31. Gagnon, AJ, Zimbeck, M, Zeitlin, J et al. (2009) Migration to western industrialised countries and perinatal health: a systematic review. Soc Sci Med 69, 934946.
32. VanderWeele, TJ & Ding, P (2017) Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 167, 268274.
33. US Department of Agriculture & US Department of Health and Human Services (2010) Dietary Guidelines for Americans, 2010, 7th ed, Washington, DC: US Government Printing Office; available at https://health.gov/dietaryguidelines/dga2010/dietaryguidelines2010.pdf
34. Papanikolaou, Y, Brooks, J, Reider, , C et al. (2014) US adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003–2008. Nutr J 13, 31.
35. Oken, E, Guthrie, LB, Bloomingdale, A et al. (2014) Assessment of dietary fish consumption in pregnancy: comparing one-, four-, and thirty-six-item questionnaires. Public Health Nutr 17, 19491959.
36. Razzaghi, H & Tinker, SC (2014) Seafood consumption among pregnant and non-pregnant women of childbearing age in the United States, NHANES 1999–2006. Food Nutr Res 11, 58.
37. US Food and Drug Administration & US Environmental Protection Agency (2017) Eating Fish: What Pregnant Women and Parents Should Know.https://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/Metals/UCM536321.pdf (accessed July 2017).

Keywords

Type Description Title
WORD
Supplementary materials

Benjamin et al. supplementary material
Tables S1-S2

 Word (31 KB)
31 KB

Fish consumption prior to pregnancy and pregnancy outcomes in the National Birth Defects Prevention Study, 1997–2011

  • Renata H Benjamin (a1), Laura E Mitchell (a1), Mark A Canfield (a2), Adrienne T Hoyt (a2), Dejian Lai (a3), Tunu A Ramadhani (a2), Suzan L Carmichael (a4), Amy P Case (a2), D Kim Waller (a1) and the National Birth Defects Prevention Study (a1) (a2) (a3) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed