Skip to main content Accessibility help
×
Home

Exploring the opportunities for food and drink purchasing and consumption by teenagers during their journeys between home and school: a feasibility study using a novel method

  • Gill Cowburn (a1), Anne Matthews (a1), Aiden Doherty (a1), Alex Hamilton (a1), Paul Kelly (a2), Julianne Williams (a1), Charlie Foster (a1) and Michael Nelson (a3)...

Abstract

Objective

To investigate the feasibility and acceptability of using wearable cameras as a method to capture the opportunities for food and drink purchasing/consumption that young people encounter on their regular journeys to and from school.

Design

A qualitative study using multiple data-collection methods including wearable cameras, global positioning system units, individual interviews, food and drink purchase and consumption diaries completed by participants over four days, and an audit of food outlets located within an 800 m Euclidean buffer zone around each school.

Setting

A community setting.

Subjects

Twenty-two students (fourteen girls and eight boys) aged 13–15 years recruited from four secondary schools in two counties of England.

Results

Wearable cameras offered a feasible and acceptable method for collecting food purchase and consumption data when used alongside traditional methods of data collection in a small number of teenagers. We found evidence of participants making deliberate choices about whether or not to purchase/consume food and drink on their journeys. These choices were influenced by priorities over money, friends, journey length, travel mode and ease of access to opportunities for purchase/consumption. Most food and drink items were purchased/consumed within an 800 m Euclidean buffer around school, with items commonly selected being high in energy, fat and sugar. Wearable camera images combined with interviews helped identify unreported items and misreporting errors.

Conclusions

Wearable camera images prompt detailed discussion and generate contextually specific information which could offer new insights and understanding around eating behaviour patterns. The feasibility of scaling up the use of these methods requires further empirical work.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Exploring the opportunities for food and drink purchasing and consumption by teenagers during their journeys between home and school: a feasibility study using a novel method
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Exploring the opportunities for food and drink purchasing and consumption by teenagers during their journeys between home and school: a feasibility study using a novel method
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Exploring the opportunities for food and drink purchasing and consumption by teenagers during their journeys between home and school: a feasibility study using a novel method
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Email gill.cowburn@dph.ox.ac.uk

References

Hide All
1. Craig, R & Mindell, J (2008) The Health Survey for England 2006: CVD and Risk Factors Adults, Obesity and Risk Factors Children. Leeds: Health & Social Care Information Centre.
2. Ridler, C, Dinsdale, H & Rutter, H (2013) National Child Measurement Programme: Changes in Children’s Body Mass Index Between 2006/07 and 2011/12. Oxford: National Obesity Observatory.
3. Stamatakis, E, Zaninotto, P, Falaschetti, E et al. (2010) Time trends in childhood and adolescent obesity in England from 1995 to 2007 and projections of prevalence to 2015. J Epidemiol Community Health 64, 167174.
4. Townsend, N, Bhatnagar, P, Wickramasinghe, K et al. (2013) Children and Young People Statistics 2013 . London: British Heart Foundation.
5. Townsend, N & Scriven, A (2014) Public Health Mini-Guides: Obesity. London: Churchill Livingstone/Elsevier.
6. Sallis, JF & Glanz, K (2009) Physical activity and food environments: solutions to the obesity epidemic. Milbank Q 87, 123154.
7. Adamson, A, Rugg-Gun, AJ, Butler, TJ et al. (1996) The contribution of foods from outside the home to the nutrient intake of young adolescents. J Hum Nutr Diet 9, 5568.
8. Stead, M, McDermott, L, Mackintosh, AM et al. (2011) Why healthy eating is bad for young people’s health: identity, belonging and food. Soc Sci Med 72, 11311139.
9. Story, M, Kaphingst, KM, Robinson-O’Brien, R et al. (2008) Creating healthy food and eating environments: policy and environmental approaches. Annu Rev Public Health 29, 253272.
10. Lake, A & Townshend, T (2006) Obesogenic environments: exploring the built and food environments. J R Soc Promot Health 126, 262267.
11. Craigie, AM, Lake, AA, Kelly, SA et al. (2011) Tracking of obesity-related behaviours from childhood to adulthood: a systematic review. Maturitas 70, 266284.
12. Department for Education (2011) Statutory Instrument 2011 No. 1190. The Education (Nutritional Standards and Requirements for School Food) (England) (Amendment) Regulations. http://legislation.gov.uk/uksi/2011/1190/contents/made (accessed November 2013).
13. Department for Education (2012) Departmental advice for school food in England: Exemptions to the school food regulations. http://www.education.gov.uk/aboutdfe/advice/f00197541/departmental-advice-for-school-food-in-england/exemptions-to-the-school-food-regulations (accessed November 2013).
14. Department of Education and Employment (2008) Statutory Instrument 2008 No. 1800. The Education (NutritionalStandards and Requirements for School Food) (England)(Amendment) Regulations. http://www.opsi.gov.uk/si/si2008/uksi_20081800_en_1 (accessed November 2013).
15. Department of Education and Employment (2007) Statutory Instrument 2007 No. 2359. The Education (Nutritional Standards and Requirements for School Food) (England) Regulations. http://www.opsi.gov.uk/si/si2007/uksi_20072359_en_1 (accessed November 2013).
16. Adamson, A, Spence, S, Reed, L et al. (2013) School food standards in the UK: implementation and evaluation. Public Health Nutr 16, 968981.
17. Smith, D, Cummins, S, Clark, C et al. (2013) Does the local food environment around schools affect diet? Longitudinal associations in adolescents attending secondary schools in East London. BMC Public Health 13, 70.
18. Williams, J, Scarborough, P, Matthews, A et al. (2014) A systematic review of the influence of the retail food environment around schools on obesity-related outcomes. Obes Rev 15, 359374.
19. Sinclair, S & Winkler, JT (2008) The School Fringe. What Pupils Buy and Eat from Shops Surrounding Secondary Schools. London: Nutrition Policy Unit, London Metropolitan University.
20. Skidmore, P, Welch, A, van Sluijs, E et al. (2010) Impact of neighbourhood food environment on food consumption in children aged 9–10 years in the UK SPEEDY (Sport, Physical Activity and Eating behaviour: Environmental Determinants in Young people) study. Public Health Nutr 13, 10221030.
21. School Food, Trust (2008) New Research Reveals Scale of Junk Food Temptation. http://www.schoolfoodtrust.org.uk/news-events/news/new-research-reveals-the-scale-of-junk-food-temptation (accessed June 2011).
22. Dr Foster Intelligence and Land Use Consultants (2011) Tackling the takeaways: a new policy to address food outlets in Tower Hamlets. http://www.towerhamlets.gov.uk/idoc.ashx?docid=2b285be6-9943-4fec-a762-76c93d07ca50&version=-1 (accessed June 2011).
23. Mayor of London, London Food Board & Chartered Institute of Environmental Health (2012) Takeaways Toolkit: Health Impacts of Fast Food Takeaways. London: Greater London Authority.
24. McKinnon, RA, Reedy, J, Morrissette, MA et al. (2009) Measures of the food environment: a compilation of the literature, 1990–2007. Am J Prev Med 36, 4 Suppl., S124S133.
25. Kelly, B, Flood, VM & Yeatman, H (2011) Measuring local food environments: an overview of available methods and measures. Health Place 17, 12841293.
26. Pomerleau, J, Knai, C, Foster, C et al. (2013) Measuring the food and built environments in urban centres: reliability and validity of the EURO-PREVOB Community Questionnaire. Public Health 127, 259267.
27. Drew, SE, Duncan, RE & Sawyer, SM (2010) Visual storytelling: a beneficial but challenging method for health research with young people. Qual Health Res 20, 16771688.
28. Gemming, L, Doherty, A, Kelly, P et al. (2013) Feasibility of a SenseCam-assisted 24-h recall to reduce under-reporting of energy intake. Eur J Clin Nutr 67, 10951099.
29. O’Loughlin, G, Cullen, SJ, McGoldrick, A et al. (2013) Using a wearable camera to increase the accuracy of dietary analysis. Am J Prev Med 44, 297301.
30. Chen, J, Marshall, SJ, Wang, L et al. (2013) Using SenseCam as an objective tool for evaluating eating patterns. In Proceedings of the 4th International SenseCam & Pervasive Imaging Conference, pp. 34–41. New York: ACM.
31. Nguyen, D, Marcu, G, Hayes, GR et al. (2009) Encountering SenseCam: personal recording technologies in everyday life. Presented at 11th International Conference on Ubiquitous Computing, Orlando, FL, USA, 30 September–3 October 2009.
32. Berry, E, Hampshire, A, Rowe, J et al. (2009) The neural basis of effective memory therapy in a patient with limbic encephalitis. J Neurol Neurosurg Psychiatry 80, 12021205.
33. Koenigstorfer, J & Groeppel-Klein, A (2010) Examining the use of nutrition labelling with photoelicitation. Qual Market Res 13, 389413.
34. Bowen, DJ, Kreuter, M, Spring, B et al. (2009) How we design feasibility studies. Am J Prev Med 36, 452457.
35. Department for Education (2011) EduBase 2. http://www.education.gov.uk/edubase/home.xhtml (accessed July 2012).
36. Caprani, N, Doherty, AR, Lee, H et al. (2010) Designing a touch-screen SenseCam browser to support an aging population. In Proceedings of the 28th of the International Conference on Human Factors in Computing Systems, pp. 4291–4296. New York: ACM.
37. Hodges, S, Williams, L, Berry, E et al. (2006) SenseCam: a retrospective memory aid. Presented at 8th International Conference of Ubiquitous Computing, Orange County, CA, USA, 17–21 September 2006.
38. Doherty, AR, Hodges, SE, King, AC et al. (2013) Wearable cameras in health: the state of the art and future possibilities. Am J Prev Med 44, 320323.
39. QStarz International Co. Ltd (2013) QStarz BT-Q1000XT Travel recorder. http://www.qstarz.com/Products/GPS%20Products/BT-Q1000XT-F.htm (accessed November 2013).
40. Kelly, P, Doherty, AR, Hamilton, A et al. (2012) Evaluating the feasibility of measuring travel to school using a wearable camera. Am J Prev Med 43, 546550.
41. Smith, G, Gidlow, C, Davey, R et al. (2010) What is my walking neighbourhood? A pilot study of English adults’ definitions of their local walking neighbourhoods. Int J Behav Nutr Phys Act 7, 34.
42. Lake, AA, Burgoine, T, Greenhalgh, F et al. (2010) The foodscape: classification and field validation of secondary data sources . Health Place 16, 666673.
43. An, R & Sturm, R (2012) School and residential neighborhood food environment and diet among California youth. Am J Prev Med 42, 129135.
44. Austin, S, Melly, SJ, Sanchez, BN et al. (2005) Clustering of fast-food restaurants around schools: a novel application of spatial statistics to the study of food environments. Am J Public Health 95, 15751581.
45. Day, PL & Pearce, J (2011) Obesity-promoting food environments and the spatial clustering of food outlets around schools. Am J Prev Med 40, 113121.
46. van der Horst, K, Timperio, A, Crawford, D et al. (2008) The school food environment associations with adolescent soft drink and snack consumption. Am J Prev Med 35, 217223.
47. Doherty, A, Moulin, C & Smeaton, A (2011) Automatically assisting human memory: a SenseCam browser. Memory 19, 785795.
48. Google Earth (2013) http://www.google.co.uk/intl/en_uk/earth/ (accessed November 2013).
49. Kelly, P, Marshall, SJ, Badland, H et al. (2013) An ethical framework for automated, wearable cameras in health behavior research. Am J Prev Med 44, 314319.
50. Mok, TM, Cornish, F & Tarr, J (2014) Too much information: visual research ethics in the age of wearable cameras. Integr Psychol Behav Sci (Epublication ahead of print version).
51. Arab, L, Estrin, D, Kim, DH et al. (2011) Feasibility testing of an automated image-capture method to aid dietary recall. Eur J Clin Nutr 65, 11561162.
52. Whitton, C, Nicholson, SK, Roberts, C et al. (2011) National Diet and Nutrition Survey: UK food consumption and nutrient intakes from the first year of the rolling programme and comparisons with previous surveys. Br J Nutr 106, 18991914.
53. Sun, M, Fernstrom, JD, Jia, W et al. (2010) A wearable electronic system for objective dietary assessment. J Am Diet Assoc 110, 4547.
54. Doherty, AR, Caprania, N, Conairea, C et al. (2011) Passively recognising human activities through lifelogging. Comput Hum Behav 27, 19481958.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed