Skip to main content Accessibility help
×
Home

Information:

  • Access
  • Cited by 3

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Examining the feasibility of implementing behavioural economics strategies that encourage home dinner vegetable intake among low-income children
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Examining the feasibility of implementing behavioural economics strategies that encourage home dinner vegetable intake among low-income children
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Examining the feasibility of implementing behavioural economics strategies that encourage home dinner vegetable intake among low-income children
        Available formats
        ×
Export citation

Abstract

Objective

To examine the feasibility of implementing nine behavioural economics-informed strategies, or ‘nudges’, that aimed to encourage home dinner vegetable intake among low-income children.

Design

Caregivers were assigned six of nine strategies and implemented one new strategy per week (i.e. 6 weeks) during three dinner meals. Caregivers recorded child dinner vegetable intake on the nights of strategy implementation and rated the level of difficulty for assigned strategies. Baseline data on home vegetable availability and child vegetable liking were collected to assess overall strategy feasibility.

Setting

Participants’ homes in a large Midwestern metropolitan area, USA.

Subjects

Low-income caregiver/child (aged 9–12 years) dyads (n 39).

Results

Pairwise comparisons showed that child dinner vegetable intake for the strategy ‘Serve at least two vegetables with dinner meals’ was greater than intake for each of two other strategies: ‘Pair vegetables with other foods the child likes’ and ‘Eat dinner together with an adult(s) modelling vegetable consumption’. Overall, caregivers’ mean rating of difficulty for implementing strategies was 2·6 (1=‘not difficult’, 10=‘very difficult’). Households had a mean of ten different types of vegetables available. Children reported a rating ≥5 for seventeen types of vegetable on a labelled hedonic scale (1=‘hate it’, 5–6=‘it’s okay’, 10=‘like it a lot’).

Conclusions

Behavioural economics-informed strategies are feasible to implement during dinner meals, with some strategies differing by how much they influence vegetable intake among low-income children in the home.

Children in the USA are not meeting recommendations for vegetable intake( 1 , 2 ). One factor that may influence child vegetable intake is whether they like vegetables( 3 5 ). Low-income children may experience additional barriers, such as limited home vegetable availability( 6 , 7 ). Thus interventions that aim to improve child vegetable intake should consider vegetable liking and availability( 8 ).

One approach used in the school setting to improve child vegetable intake is the implementation of strategies informed by behavioural economics, or ‘nudges’( 9 , 10 ). Behavioural economics, a sub-field grounded in principles of psychology and economics( 9 ), is based on the premise that the social and physical environment can be framed in a way to ‘nudge’ individuals to make healthy choices, in a manner that does not limit the choice set itself( 10 , 11 ). For example, school cafeterias have been manipulated to increase child vegetable intake by improving aspects of convenience, attractiveness and normativeness( 12 ). A systematic review of studies implementing nudges in school settings has shown the utility of these approaches in improving eating behaviour among children( 13 ).

The home environment is a promising setting for studies implementing nudges because children consume about 66 % of their daily energy intake at home( 14 ). In a home-based, 4-week, randomized-controlled, proof-of-concept trial, Cravener et al. showed that offering pre-school children vegetables as a default snack, paired with positive incentives, improved vegetable intake( 15 ). The home is a relatively new setting for the application of these principles and limited studies are available particularly among older children. In addition to offering vegetables as a default option, other less studied strategies may be effective and feasible ways to improve child vegetable intake in the home setting. Therefore, the aim of the present study was to determine the feasibility of implementing nine behavioural economics-informed strategies that aimed to encourage dinner vegetable intake among children aged 9–12 years residing in households receiving food assistance (a proxy for low-income status).

Methods

The methodology for the present study was published previously( 16 ). It included information about study recruitment, a description about how the nine strategies were identified, details about measures/instruments and training procedures for caregivers to record child dinner vegetable consumption( 16 ).

Study participants

Inclusion criteria for caregivers included caring for a child between the ages of 9 and 12 years, being the primary food preparer in the home, preparing dinner at least three nights per week, participating in public food assistance programmes (e.g. the Supplemental Nutrition Assistance Program) and reading, writing and speaking English. Caregivers received $US 100 and their 9–12-year-old received $US 20 for their participation. Approval was obtained from the University of Minnesota Twin Cities Institutional Review Board. Caregivers and their child signed informed consent and assent forms, respectively.

Procedures

Participants were recruited and participated in the study during one of the following three time frames (i.e. time of year): (i) from September to November 2013; (ii) from January to March 2014; or (iii) from March to May 2014. There were relatively equal numbers of parent/child dyads in each of the three time frames. A baseline home visit was conducted to obtain sociodemographic and household information, home vegetable availability and child vegetable liking data. After the baseline home visit, caregivers were randomly assigned six of nine strategies (Table 1). Over a 6-week period, a different strategy was implemented on a weekly basis during at least three dinner meals that week. The order of strategy implementation was randomly assigned.

Table 1 Nine behavioural economics strategies evaluated for feasibility

During a telephone call at the beginning of the first week, researchers assigned caregivers a strategy. Caregivers were referred to a Strategy Guidebook for instructions and examples for how the strategy could be implemented( 16 ). Caregivers recorded child vegetable intake on the three dinner meals per week when the strategy was implemented using a Dinner Vegetable Record Form. At the end of each week during an audio-recorded telephone call with a trained researcher, caregivers reported child vegetable consumption from the Dinner Vegetable Record Form. Caregivers were also asked to rate the difficulty of using the strategy. At the end of the call, researchers assigned a new strategy. This procedure was followed until caregivers completed six strategies.

Measures

Sociodemographic and household characteristics

Caregivers completed a questionnaire during the baseline home visit to report age, gender, race/ethnicity, highest educational attainment and employment status, as well as child age, gender and race/ethnicity, and household composition. An amended version of the US Department of Agriculture’s six-item Food Security Survey was used to assess household food security( 17 ).

Feasibility of strategies

On the three nights that caregivers implemented a strategy, caregivers recorded child vegetable consumption on the Dinner Vegetable Record Form, along with the vegetable type(s) and amount consumed. Caregivers also rated the level of difficulty for each of the strategies they were assigned (1=‘not difficult’, 10=‘very difficult’). A shortened version of a previously validated home food inventory was used to document the presence of thirty-six vegetables, including four types of legumes( 18 ). During the baseline home visit, a researcher documented the presence of these vegetables (1=‘yes’, 0=‘no’). Children also provided liking ratings for these thirty-six vegetable types using a labelled hedonic scale (1=‘hate it’, 5–6=‘it’s okay’, 10=‘like it a lot’).

Statistical analyses

Descriptive statistics were calculated to examine the distribution of sociodemographic and household characteristics.

Mean dinner vegetable intake was calculated over the three days each strategy was implemented in its assigned week. Vegetable intakes for the strategies were then compared using a mixed-model ANOVA with a random effect for child. Fixed independent variables included strategies, the week of strategy implementation (as a continuous measure) and the time of year when the strategy was implemented. The week × time of year interaction was also included in the model. Multiple pairwise comparisons of the strategies were evaluated using the Tukey Honestly Significant Difference test. Least-square means for dinner vegetable intake per each of the nine strategies and 95 % confidence intervals were reported.

Potential covariates were tested separately in the mixed model to determine effects on differences in mean child dinner vegetable intake between each strategy. Covariates included caregiver’s age, race/ethnicity, caregiver education and employment status, number of individuals residing in the household, household food security, home vegetable availability and average vegetable liking rating score across thirty-six vegetable types. Differences were not observed and thus the final mixed-model ANOVA was not adjusted for any covariates. Level of significance was set at α=0·05.

Mean difficulty rating for each strategy, mean total number of different vegetables available in homes, mean vegetable liking across all vegetables and mean number of vegetable types liked by children were calculated.

Results

Based on previously published sample size calculations( 16 ), forty-seven caregiver/child dyads were recruited and completed the baseline home visit. Eight families withdrew from the study and thus thirty-nine caregiver/child dyads were included in the final analyses. Sociodemographic and household characteristics for the thirty-nine caregiver/child dyads are described in Table 2. Most caregivers were female (97·4 %) and Black/African American (47·4 %) or White (36·8 %). The majority had some college education (63·2 %) and had low or very low food security status (65·7 %). About half of the children were boys (51·3 %). Mean child age was 10·4 years.

Table 2 Sociodemographic and household characteristics of low-income caregiver/child dyads (n 39) from a large Midwestern metropolitan area, USA, 2013–2014

GED, General Educational Development.

Feasibility of strategies

Mean child dinner vegetable intake ranged from 0·77 to 1·20 cups by week of implementation of the nine different strategies (Table 3). Significant effects were observed for strategy (P=0·02), but not for week of strategy implementation (P=0·99), time of year when the strategy was implemented (P=0·54) or week × time of year interaction (P=0·47). Children consumed significantly more vegetables when the ‘Serve at least two vegetables with dinner meals’ strategy was implemented compared with when ‘Pair vegetables with other foods child likes’ (0·43 more cups; P=0·01) and ‘Eat dinner together with an adult(s) modelling vegetable consumption’ (0·39 more cups; P=0·04) were implemented. Mean dinner vegetable intake for the remaining six strategies was not different when compared with ‘Serve at least two vegetables with dinner meals’, ‘Pair vegetables with other foods child likes’ and ‘Eat dinner together with an adult(s) modelling vegetable consumption’ strategies (Table 3).

Table 3 Impact of behavioural economics strategies on child mean dinner vegetable intake among low-income caregiver/child dyads (n 39) from a large Midwestern metropolitan area, USA, 2013–2014

a,bMean values within a column with unlike superscript letters were significantly different according to Tukey Honestly Significant Difference pairwise comparisons (P<0·05).

* Within a week, a caregiver may have provided Dinner Vegetable Food Record data from one to three dinners.

Least-squares means and se from mixed-model ANOVA.

Caregivers rated the difficulty of implementing the strategies with an overall mean of 2·6, with mean scores for individual strategies ranging from 2·1 to 2·9 on a 10-point scale. Households had on average 10 (sd 3·9) different types of vegetables present in the home. On average, children had tried 24 (sd 4·9) different vegetable types. The mean vegetable liking rating for children was 6·7 (sd 1·1). They rated 17 (sd 5·0) types of vegetable ≥5 on the 10-point scale.

Discussion

Findings suggest that the nine tested strategies had a similar effect on mean child dinner vegetable intake. The ‘Serve at least two vegetables with dinner meals’ strategy may be particularly effective at encouraging child vegetable intake in the home environment, a finding underscored by previous studies reporting that serving more than one vegetable significantly increased both the selection( 19 ) and consumption of vegetables( 20 ) in settings outside the home. Serving more than one type of food (e.g. vegetables) is a visual cue that nudges people into eating more( 21 ).

In the current study, one strategy was implemented per week; however, in previous school-based interventions, multiple behavioural economics strategies have been implemented simultaneously in cafeterias in what is known as ‘smarter lunchroom makeovers’( 12 , 22 ). Making these small environmental changes simultaneously has resulted in positive eating behaviour changes for children in school settings. Results from the current study indicate that single strategies implemented in the home had similar effects on dinner vegetable intake among children. Therefore, the use of multiple strategies by caregivers simultaneously may also be an effective means to improve dietary intake at home. Simultaneous implementation of multiple strategies in school cafeterias may be feasible because of the availability of dedicated staff and resources; however, further research is needed to determine whether caregivers can easily manage implementing multiple strategies at home.

A variety of vegetable types were available in homes and children generally liked vegetables, both of which support the low ratings of difficulty by caregivers. As other studies have reported, availability and child food preferences often influence food preparation and mealtime practices( 23 , 24 ). To avoid food waste, low-income caregivers may limit the type of vegetables they purchase to those their children like. Brown and Wenrich reported that food waste is a barrier for low-income caregivers regarding preparation of unfamiliar vegetables( 23 ). Interviews and grocery shopping observations by Daniel also showed that avoidance of food waste by low-income parents limits choice of foods to those their children prefer( 25 ).

The present study has several limitations. First, baseline and follow-up child dinner vegetable intake record data were not collected. These data would have helped determine the cumulative effect of implementing the behavioural economics strategies. Also, there may have been measurement error when caregivers reported child dinner vegetable intake on the nights when strategies were implemented. Another limitation is that there was no within-group control. Future studies should consider collecting child dinner vegetable intake on nights when strategies are not implemented. Lastly, the Strategy Guidebook allowed for caregivers to implement the strategies in various ways, which could have influenced the resulting vegetable intake. Despite these limitations, the current study addresses a major gap in the literature regarding the feasibility of implementing behavioural economics strategies in the home setting. Given the success of nudges in the school environment, incorporating similar strategies in the home could potentially further improve child vegetable intake. Future studies should consider allowing parents to self-select strategies they would like to implement in order to account for vegetable availability, as well as child vegetable preferences.

Acknowledgements

Financial support: This material is based upon work (completed at the University of Minnesota) that was supported by the National Institute of Food and Agriculture, US Department of Agriculture (award number 2012-68001-19631). Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the US Department of Agriculture. The National Institute of Food and Agriculture, US Department of Agriculture had no role in the design, analysis or writing of this article. Conflict of interest: None. Authorship: M.R., Z.V., E.M., J.P.R., T.M., A.S., and T.M.L. formulated the research questions and designed the study. T.M.L. and A.S. conducted the study, while A.R. and T.M.L. analysed the data. T.M.L., Z.V. and M.R. wrote the article. Ethics of human subject participation: This study was conducted according to the guidelines laid down in the Declaration of Helsinki and the University of Minnesota Institutional Review Board approved all procedures involving human subjects/patients. Written informed consent and assent was obtained from all parents/caregivers and child participants, respectively.

References

1. US Department of Agriculture, Agricultural Research Service (2016) Food Patterns Equivalents Intakes from Food: Mean Amounts Consumed per Individual, by Gender and Age. What We Eat in America, NHANES 2011–2012. http://www.ars.usda.gov/ba/bhnrc/fsrg (accessed August 2016).
2. US Department of Health and Human Services & US Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans, 8th ed. http://health.gov/dietaryguidelines/2015/guidelines/ (accessed August 2016).
3. Anzman-Frasca, S, Savage, JS, Marini, ME et al. (2012) Repeated exposure and associative conditioning promote preschool children’s liking of vegetables. Appetite 58, 543553.
4. Caton, SJ, Ahern, SM, Remy, E et al. (2013) Repetition counts: repeated exposure increases intake of a novel vegetable in UK pre-school children compared to flavour–flavour and flavour–nutrient learning. Br J Nutr 109, 20892097.
5. Fildes, A, van Jaarsveld, CH, Wardle, J et al. (2014) Parent-administered exposure to increase children’s vegetable acceptance: a randomized controlled trial. J Acad Nutr Diet 114, 881888.
6. Kirkpatrick, SI, Dodd, KW, Reedy, J et al. (2012) Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J Acad Nutr Diet 112, 624635.
7. Fram, MS, Ritchie, LD, Rosen, N et al. (2015) Child experience of food insecurity is associated with child diet and physical activity. J Nutr 145, 499504.
8. Tak, NI, te Velde, SJ & Brug, J (2009) Long-term effects of the Dutch Schoolgruiten Project – promoting fruit and vegetable consumption among primary-school children. Public Health Nutr 12, 12131223.
9. Just, DR & Wansink, B (2009) Smarter lunchrooms: using behavioral economics to improve meal selection. Choices 24, 17.
10. Thaler, RH & Sunstein, CR (2008) Nudge: Improving Decisions about Health, Wealth, and Happiness. New Haven, CT: Yale University Press.
11. Heshmat, S (2011) Eating Behavior and Obesity: Behavioral Economics Strategies for Health Professionals. New York: Springer Publishing Company.
12. Hanks, AS, Just, DR & Wansink, B (2013) Smarter lunchrooms can address new school lunchroom guidelines and childhood obesity. J Pediatr 162, 867869.
13. Kessler, HS (2016) Simple interventions to improve healthy eating behaviors in the school cafeteria. Nutr Rev 74, 198209.
14. Poti, JM & Popkin, BM (2011) Trends in energy intake among US children by eating location and food source, 1977–2006. J Am Diet Assoc 111, 11561164.
15. Cravener, TL, Schlechter, H, Loeb, KL et al. (2015) Feeding strategies derived from behavioral economics and psychology can increase vegetable intake in children as part of a home-based intervention: results of a pilot study. J Acad Nutr Diet 115, 17981807.
16. Leak, TM, Swenson, A, Vickers, Z et al. (2015) Testing the effectiveness of in-home behavioral economics strategies to increase vegetable intake, liking, and variety among children residing in households that receive food assistance. J Nutr Educ Behav 47, e1e9.
17. US Department of Agriculture, Economic Research Service (2016) Six-Item Short Form of the Food Security Survey Module. http://www.ers.usda.gov/topics/food-nutrition-assistance/food-security-in-theus/survey-tools.aspx#six (accessed August 2016).
18. Fulkerson, JA, Nelson, MC, Lytle, L et al. (2008) The validation of a home food inventory. Int J Behav Nutr Phys Act 5, 55.
19. Bucher, T, Siegrist, M & van der Horst, K (2014) Vegetable variety: an effective strategy to increase vegetable choice in children. Public Health Nutr 17, 12321236.
20. Roe, LS, Meengs, JS, Birch, LL et al. (2013) Serving a variety of vegetables and fruit as a snack increased intake in preschool children. Am J Clin Nutr 98, 693699.
21. Wadhera, D & Capaldi-Phillips, ED (2014) A review of visual cues associated with food on food acceptance and consumption. Eat Behav 15, 132143.
22. Song, HJ, Grutzmacher, S & Munger, AL (2016) Project ReFresh: testing the efficacy of school-based classroom and cafeteria intervention in elementary school children. J Sch Health 86, 543551.
23. Brown, JL & Wenrich, TR (2012) Intra-family role expectations and reluctance to change identified as key barriers to expanding vegetable consumption patterns during interactive family-based program for Appalachian low-income food preparers. J Acad Nutr Diet 112, 11881200.
24. Berge, JM, Hoppmann, C, Hanson, C et al. (2013) Perspectives about family meals from single-headed and dual-headed households: a qualitative analysis. J Acad Nutr Diet 113, 16321639.
25. Daniel, C (2016) Economic constraints on taste formation and the true cost of healthy eating. Soc Sci Med 148, 3441.