Skip to main content Accessibility help

Ethnic variance in iron status: is it related to dietary intake?

  • Clare R Wall (a1), Deborah R Brunt (a2) and Cameron C Grant (a2) (a3)



In New Zealand (NZ), Fe deficiency (ID) is present in 14 % of children aged <2 years. Prevalence varies with ethnicity (NZ European 7 %, Pacific 17 %, Maori 20 %). We describe dietary Fe intake, how this varies with ethnicity and whether intake predicts Fe status.


A random sample of children aged 6–23 months. Usual Fe intake and dietary sources were estimated from 2 d weighed food records. Associations were determined between adequacy of Fe intake, as measured by the Estimated Average Requirement (EAR), and ID.


Sampling was stratified by ethnicity. Dietary and blood analysis data were available for 247 children.


The median daily Fe intake was 8·3 mg (age 6–11 months) and 6·3 mg (age 12–23 months). Breast milk and milk formulas (median 58 %; age 6–11 months), and cereals (41 %) and fruit and vegetables (17 %; age 12–23 months), were the predominant dietary sources of Fe. Fe intake was below the EAR for 25 % of the children. Not meeting the EAR increased the risk of ID for children aged 6–11 months (relative risk = 18·45, 95 % CI 3·24, 100·00) and 12–23 months (relative risk = 4·95, 95 % CI 1·59, 15·41). In comparison with NZ European, Pacific children had a greater daily Fe intake (P = 0·04) and obtained a larger proportion of Fe from meat and meat dishes (P = 0·02).


A significant proportion of young NZ children have inadequate dietary Fe intake. This inadequate intake increases the risk of ID. Ethnic differences in Fe intake do not explain the increased risk of ID for Pacific children.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ethnic variance in iron status: is it related to dietary intake?
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ethnic variance in iron status: is it related to dietary intake?
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ethnic variance in iron status: is it related to dietary intake?
      Available formats


Corresponding author

*Corresponding author: Email


Hide All
1.Karr, M, Alperstein, G, Causer, J, Mira, M, Lammi, A & Fett, MJ (1996) Iron status and anaemia in preschool children in Sydney. Aust N Z J Public Health 20, 618622.
2.Male, C, Persson, LA, Freeman, V, Guerra, A, van’t Hof, MA & Haschke, F; Euro-Growth Iron Study Group (2001) Prevalence of iron deficiency in 12-mo-old infants from 11 European areas and influence of dietary factors on iron status (Euro-Growth study). Acta Paediatr 90, 492498.
3.Anon (2002) Iron deficiency – United States, 1999–2000. MMWR Morb Mortal Wkly Rep 51, 897899.
4.Grant, CC, Wall, CR, Brunt, D, Crengle, S & Scragg, R (2007) Population prevalence and risk factors for iron deficiency in Auckland, New Zealand. J Paediatr Child Health 43, 532538.
5.Yip, R, Walsh, KM, Goldfarb, MG & Binkin, NJ (1987) Declining prevalence of anemia in childhood in a middle-class setting: a pediatric success story? Pediatrics 80, 330334.
6.Yip, R, Binkin, NJ, Fleshood, L & Trowbridge, FL (1987) Declining prevalence of anemia among low-income children in the United States. JAMA 258, 16191623.
7.Briefel, R, Hanson, C, Fox, MK, Novak, T & Ziegler, P (2006) Feeding Infants and Toddlers Study: do vitamin and mineral supplements contribute to nutrient adequacy or excess among US infants and toddlers? J Am Diet Assoc 106, S52S65.
8.Gregory, J, Collins, DL, Davies, PS, Hughes, JM & Clarke, PC (1995) The Dietary and Nutritional Survey: Children Aged 1 1/2 to 4 1/2 Years. Report of the Diet and Nutrition Survey. London: HMSO.
9.Baggett, HC, Parkinson, AJ, Muth, PT, Gold, BD & Gessner, BD (2006) Endemic iron deficiency associated with Helicobacter pylori infection among school-aged children in Alaska. Pediatrics 117, e396e404.
10.Fraser, AG, Scragg, R, Metcalf, P, McCullough, S & Yeates, NJ (1996) Prevalence of Helicobacter pylori infection in different ethnic groups in New Zealand children and adults. Aust NZ J Med 26, 646651. Onis, M, Garza, C, Victora, CG, Onyango, AW, Frongillo, EA & Martines, J (2004) The WHO Multicentre Growth Reference Study: planning, study design, and methodology. Food Nutr Bull 25, S15S26.
12.New Zealand Institute for Crop and Food Research Limited & Ministry of Health (2008) New Zealand Food Composition Database. (accessed November 2008).
13.Dewey, KG, Heinig, MJ, Nommsen, LA & Lonnerdal, B (1991) Adequacy of energy intake among breast-fed infants in the DARLING study: relationships to growth velocity, morbidity, and activity levels. J Pediatr 119, 538547.
14.Nusser, SM, Carriquiry, AL, Dodd, KW & Fuller, WA (1996) A semiparametric transformation approach to estimating usual daily intake distributions. J Am Stat Assoc 91, 14401449.
15.Department of Health and Ageing, Australian Government, Australian National Health and Medical Research Council & New Zealand Ministry of Health (2006) Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. Canberra: Commonwealth of Australia; available at
16.Looker, AC, Dallman, PR, Carroll, MD, Gunter, EW & Johnson, CL (1997) Prevalence of iron deficiency in the United States. JAMA 277, 973976.
17.Anon. (1985) Summary of a report on assessment of the iron nutritional status of the United States population. Expert Scientific Working Group. Am J Clin Nutr 42, 13181330.
18.Centers for Disease Control and Prevention (1998) Recommendations to prevent and control iron deficiency in the United States. MMWR Morb Mortal Wkly Rep 47, 129.
19.Salmond, C & Crampton, P (2002) NZDep2001 Index of Deprivation. Wellington: Wellington School of Medicine and Health Sciences, University of Otago.
20.Auckland Regional Public Health Service (2006) Improving Health and Wellbeing: A Public Health Perspective for Local Authorities in the Auckland Region. Auckland: Auckland Regional Public Health Service.
21.Soh, P, Ferguson, EL, McKenzie, JE, Skeaff, S, Parnell, W & Gibson, RS (2002) Dietary intakes of 6–24-month-old urban South Island New Zealand children in relation to biochemical iron status. Public Health Nutr 5, 339346.
22.Heath, AL, Tuttle, CR, Simons, MS, Cleghorn, CL & Parnell, WR (2002) Longitudinal study of diet and iron deficiency anaemia in infants during the first two years of life. Asia Pac J Clin Nutr 11, 251257.
23.Devaney, B, Ziegler, P, Pac, S, Karwe, V & Barr, SI (2004) Nutrient intakes of infants and toddlers. J Am Diet Assoc 104, s14s21.
24.Anon. (1976) Committee on Nutrition: iron supplementation for infants. Pediatrics 58, 765768.
25.Walter, T, Dallman, PR, Pizarro, F, Velozo, L, Peña, G, Bartholmey, SJ, Hertrampf, E, Olivares, M, Letelier, A & Arredondo, M (1993) Effectiveness of iron-fortified infant cereal in prevention of iron deficiency anemia. Pediatrics 91, 976982.
26.Food Standards Australia and New Zealand (2008) Australia New Zealand Food Standards Code. Barton: FSANZ; available at
27.Keusch, GT (2003) The history of nutrition: malnutrition, infection and immunity. J Nutr 133, 336S340S.
28.Ministry of Health (1998) Our Children’s Health; Key Findings on the Health of New Zealand Children. Wellington: Ministry of Health.
29.Roy, CN & Andrews, NC (2005) Anemia of inflammation: the hepcidin link. Curr Opin Hematol 12, 107111.
30.Black, RE, Allen, LH, Bhutta, ZA, Caulfield, LE, de Onis, M, Ezzati, M, Mathers, C & Rivera, J; Maternal and Child Undernutrition Study Group (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243260.
31.Yeung, DL & Kwan, D (2002) Commentary: experiences and challenges in industrialized countries. J Nutr 132, 825S826S.
32.Statistics New Zealand (2005) National Ethnic Population Projections. Wellington: Statistics New Zealand.
33.Nelson, M, Black, AE, Morris, JA & Cole, TJ (1989) Between- and within-subject variation in nutrient intake from infancy to old age: estimating the number of days required to rank dietary intakes with desired precision. Am J Clin Nutr 50, 155167.
34.Brown, K, Dewey, K & Allen, L (1998) Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge. Geneva: WHO.
35.Akel, R, Frankish, J, Powles, C, Tyler, KR, Watt, JM, Weston, HJ & Prior, IA (1963) Anaemia in Maori and European infants on admission to hospital. A co-operative survey from six New Zealand Hospitals. N Z Med J 62, 2933.
36.Anon. (1999) What Is the Knowledge Economy? Wellington: Ministry of Economic Development; available at
37.Pollitt, E (1997) Iron deficiency and educational deficiency. Nutr Rev 55, 133141.
38.Lozoff, B, Jimenez, E, Hagen, J, Mollen, E & Wolf, AW (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105, E51.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed