Skip to main content Accessibility help
×
Home

Effect on risk of anencephaly of gene–nutrient interactions between methylenetetrahydrofolate reductase C677T polymorphism and maternal folate, vitamin B12 and homocysteine profile

  • Marina Lacasaña (a1) (a2), Julia Blanco-Muñoz (a3), Victor H Borja-Aburto (a4), Clemente Aguilar-Garduño (a5), Miguel Rodríguez-Barranco (a1), José A Sierra-Ramirez (a6) (a7), Carlos Galaviz-Hernandez (a8), Beatriz Gonzalez-Alzaga (a1) and Ricardo Garcia-Cavazos (a6) (a7)...

Abstract

Objective

To evaluate the effects on anencephaly risk of the interaction between the maternal profile of folate, vitamin B12 and homocysteine and the 677C→T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR).

Design

Case–control study paired (1:1) on maternity clinic, date of birth and state of residence. Cases of anencephaly were identified using the Registry of the Mexican Neural Tube Defect Epidemiological Surveillance System. Case and control mothers were selected from the same maternity departments. All mothers completed a structured questionnaire and blood samples were obtained to determine the MTHFR 677C→T polymorphism and biochemical profile.

Setting

Mexico, Puebla and Guerrero states, Mexico.

Subjects

A total of 151 mothers of cases and controls were enrolled from March 2000 to February 2001. We had complete information on biochemical profile and MTHFR C677T polymorphism for ninety-eight mothers of cases and ninety-one mothers of controls.

Results

The adjusted models show that the risk of anencephaly in mothers with 677TT genotype was reduced by 18 % (OR = 0·82; 95 % CI 0·72, 0·94) for each 1 ng/ml increment in serum folate. In terms of tertiles, mothers with 677TT genotype with serum folate levels in the upper tertile (>14·1 ng/ml) had a 95 % lower risk to have a child with anencephaly than mothers with serum folate levels in the first and second tertiles (P trend = 0·012).

Conclusions

Our data agree with the hypothesis of a gene–nutrient interaction between MTHFR 677C→T polymorphism and folate status. We observed a protective effect on anencephaly risk only in mothers with 677TT genotype as serum folate levels increased.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect on risk of anencephaly of gene–nutrient interactions between methylenetetrahydrofolate reductase C677T polymorphism and maternal folate, vitamin B12 and homocysteine profile
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect on risk of anencephaly of gene–nutrient interactions between methylenetetrahydrofolate reductase C677T polymorphism and maternal folate, vitamin B12 and homocysteine profile
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect on risk of anencephaly of gene–nutrient interactions between methylenetetrahydrofolate reductase C677T polymorphism and maternal folate, vitamin B12 and homocysteine profile
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email marina.lacasana.easp@juntadeandalucia.es

References

Hide All
1. International Clearinghouse for Birth Defects Monitoring System (2008) Annual Report 2008 with Data for 2006. Rome: The Centre of International Clearinghouse for Birth Defects Surveillance and Research (ICBDSR), available at http://www.icbdsr.org/page.asp?p=10065&l=1
2. Blatter, BM, Van der Star, M & Roeleveld, N (1994) Review of neural tube defects: risk factors in parental occupation and the environment. Environ Health Perspect 102, 140145.
3. Copp, AJ & Greene, ND (2010) Genetics and development of neural tube defects. J Pathol 220, 217230.
4. Botto, LD & Yang, Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151, 862877.
5. Guéant, JL, Guéant-Rodriguez, RM, Anello, G et al. (2003) Genetic determinants of folate and vitamin B12 metabolism: a common pathway in neural tube defect and Down syndrome? Clin Chem Lab Med 41, 14731477.
6. Gaber, KR, Farag, MK, Soliman, SE et al. (2007) Maternal vitamin B12 and the risk of fetal neural defects in Egyptian patients. Clin Lab 53, 6975.
7. Félix, TM, Leistner, S & Giugliani, R (2004) Metabolic effects and the methylenetetrahydrofolate reductase (MTHFR) polymorphism associated with neural tube defects in southern Brazil. Birth Defects Res A Clin Mol Teratol 70, 459463.
8. Suarez, L, Hendricks, K, Felkner, M et al. (2003) Maternal serum B12 levels and risk for neural tube defects in a Texas–Mexico border population. Ann Epidemiol 13, 8188.
9. Martínez de Villarreal, LE, Delgado-Enciso, I, Valdéz-Leal, R et al. (2001) Folate levels and N(5),N(10)-methylenetetrahydrofolate reductase genotype (MTHFR) in mothers of offspring with neural tube defects: a case–control study. Arch Med Res 32, 277282.
10. Christensen, B, Arbour, L, Tran, P et al. (1999) Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am J Med Genet 84, 151157.
11. Kirke, PN, Molloy, AM, Daly, LE et al. (1993) Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med 86, 703708.
12. Wild, J, Schorah, CJ, Sheldon, TA et al. (1993) Investigation of factors influencing folate status in women who have had a neural tube defect-affected infant. Br J Obstet Gynaecol 100, 546549.
13. Bagley, PJ & Selhub, J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95, 1321713220.
14. Boyles, AL, Hammock, P & Speer, MC (2005) Candidate gene analysis in human neural tube defects. Am J Med Genet C Semin Med Genet 135C, 923.
15. Friso, S & Choi, SW (2005) Gene–nutrient interactions in one-carbon metabolism. Curr Drug Metab 6, 3746.
16. Holm, PI, Hustad, S, Ueland, PM et al. (2007) Modulation of the homocysteine–betaine relationship by methylenetetrahydrofolate reductase 677C→T genotypes and B-vitamin status in a large-scale epidemiological study. J Clin Endocrinol Metab 92, 15351541.
17. Frosst, P, Blom, MJ, Lios, R et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10, 111113.
18. Weisberg, I, Tran, P, Christensen, B et al. (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64, 169172.
19. Jakubowski, H, Boers, GH & Strauss, KA (2008) Mutations in cystathionine β-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J 22, 40714076.
20. van der Put, NM, Gabreels, F, Stevens, EM et al. (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62, 10441051.
21. Ulvik, A, Ueland, PM, Fredriksen, A et al. (2007) Functional inference of the methylenetetrahydrofolate reductase 677C→T and 1298A→C polymorphisms from a large-scale epidemiological study. Hum Genet 121, 5764.
22. Blanco-Muñoz, J, Lacasaña, M, Cavazos, RG et al. (2007) Methylenetetrahydrofolate reductase gene polymorphisms and the risk of anencephaly in Mexico. Mol Hum Reprod 13, 419424.
23. Mutchinick, OM, Lopez, MA, Luna, L et al. (1999) High prevalence of the thermolabile methylenetetrahydrofolate reductase variant in Mexico: a country with a very high prevalence of neural tube defects. Mol Genet Metab 68, 461467.
24. Gonzalez-Herrera, L, Castillo-Zapata, I, Garcia-Escalante, G et al. (2007) A1298C polymorphism of the MTHFR gene and neural tube defects in the state of Yucatan, Mexico. Birth Defects Res A Clin Mol Teratol 79, 622626.
25. Kirke, PN, Mills, JL, Molloy, AM et al. (2004) Impact of the MTHFR C677T polymorphism on risk of neural tube defects: case–control study. BMJ 328, 15351536.
26. Amorim, MR, Lima, MA, Castilla, EE et al. (2007) Non-Latin European descent could be a requirement for association of NTDs and MTHFR variant 677C→T: a meta-analysis. Am J Med Genet A 143, 17261732.
27. Shaw, GM, Rozen, R, Finnell, RH et al. (1998) Maternal vitamin use, genetic variation of infant methylenetetrahydrofolate reductase, and risk for spina bifida. Am J Epidemiol 148, 3037.
28. Scholl, TO & Johnson, WG (2000) Folic acid: influence on the outcome of pregnancy. Am J Clin 71, 5 Suppl., 1295S1303S.
29. Harisha, PN, Devi, BI, Christopher, R et al. (2010) Impact of 5,10-methylenetetrahydrofolate reductase gene polymorphism on neural tube defects. J Neurosurg Pediatr 6, 364367.
30. Lacasaña, M, Vázquez-Grameix, H, Borja-Aburto, VH et al. (2006) Maternal and paternal occupational exposure to agricultural work and the risk of anencephaly. Occup Environ Med 63, 649656.
31. Garcia-Closas, M & Lubin, JH (1999) Power and sample size calculations in case–control studies of gene–environmental interactions: comments on different approaches. Am J Epidemiol 149, 689693.
32. Willett, WC (1998) Nutritional Epidemiology, 2nd ed. New York: Oxford University Press.
33. Hernández-Avila, M, Romieu, I, Parra, S et al. (1998) Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex 40, 133140.
34. Abbott Diagnostics Division (2001) IMx System Folate. Abbott Park, IL: Abbott Laboratories.
35. Abbott Diagnostics Division (1997) IMx System Vitamin B-12. Wiesbaden: Abbott Laboratories.
36. Abbott Diagnostics Division (2001) IMx System Homocysteine. Mexico DF: Abbott Laboratories.
37. Institute of Medicine (2002) Dietary Reference Intakes (DRI) for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press.
38. Cech, I & Burau, KD (2010) Serological differences in folate/vitamin B12 in pregnancies affected by neural tube defects. South Med J 103, 419424.
39. Davis, BA, Bailey, LB, Gregory, JF et al. (1995) Folic acid absorption in women with a history of pregnancy with neural tube defect. Am J Clin Nutr 62, 782784.
40. Ren, A, Zhang, L, Hao, L et al. (2007) Comparison of blood folate levels among pregnant Chinese women in areas with high and low prevalence of neural tube defects. Public Health Nutr 10, 762768.
41. Mitchell, LE, Duffy, DL, Duffy, P et al. (1997) Genetic effects on variation in red-blood-cell folate in adults: implications for the familial aggregation of neural tube defects. Am J Hum Genet 60, 433438.
42. Molloy, AM, Mills, JL, Kirke, PN et al. (1998) Whole blood folate values in subjects with different methylenetetrahydrofolate reductase genotypes: differences between the radioassay and microbiological assays. Clin Chem 44, 186188.
43. Narayanan, S, McConnell, J, Little, J et al. (2004) Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo . Cancer Epidemiol Biomarkers Prev 13, 14361443.
44. Perez, AB, D'Almeida, V, Vergani, N et al. (2003) Methylenetetrahydrofolate reductase (MTHFR): incidence of mutations C677T and A1298C in Brazilian population and its correlation with plasma homocysteine levels in spina bifida. Am J Med Genet A 119, 2025.
45. Li, D, Pickell, L, Liu, Y et al. (2006) Impact of methylenetetrahydrofolate reductase deficiency and low dietary folate on the development of neural tube defects in splotch mice. Birth Defects Res A Clin Mol Teratol 76, 5559.
46. Bennett, GD, Vanwaes, J, Moser, K et al. (2006) Failure of homocysteine to induce neural tube defects in a mouse model. Birth Defects Res B Dev Reprod Toxicol 77, 8994.
47. Padmanabhan, R, Shafiullah, M, Benedict, S et al. (2006) Effect of maternal exposure to homocystine on sodium valproate-induced neural tube defects in the mouse embryos. Eur J Nutr 45, 311319.
48. Heidenreich, DJ, Reedy, MV & Brauer, PR (2008) Homocysteine enhances cardiac neural crest cell attachment in vitro by increasing intracellular calcium levels. Dev Dyn 237, 21172128.
49. Blom, HJ (2009) Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol 85, 295302.
50. Wilson, A, Platt, R, Wu, Q et al. (1999) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab 67, 317323.
51. Lucock, M, Daskalakis, I, Hinkins, M et al. (2001) An examination of polymorphic genes and folate metabolism in mothers affected by a spina bifida pregnancy. Mol Genet Metab 73, 322332.
52. Relton, CL, Wilding, CS, Pearce, MS et al. (2004) Gene–gene interaction in folate-related genes and risk of neural tube defects in a UK population. J Med Genet 41, 256260.
53. O'Leary, VB, Mills, JL, Pangilinan, F et al. (2005) Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab 85, 220227.
54. Blom, HJ, Shaw, GM, den Heijer, M et al. (2006) Neural tube defects and folate: case far from closed. Nat Rev Neurosci 7, 724731.
55. Bruinse, HW & van den Berg, H (1995) Changes of some vitamin levels during and after normal pregnancy. Eur J Obstet Gynecol Reprod Biol 61, 3137.
56. Cikot, RJ, Steegers-Theunissen, RP, Thomas, CM et al. (2001) Longitudinal vitamin and homocysteine levels in normal pregnancy. Br J Nutr 85, 4958.
57. McPartlin, J, Halligan, A, Scott, JM et al. (1993) Accelerated folate breakdown in pregnancy. Lancet 341, 148149.
58. O'Rourke, KM, Redlinger, TE & Waller, DK (2000) Declining levels of erythrocyte folate during the postpartum period among Hispanic women living on the Texas–Mexico border. J Womens Health Gend Based Med 9, 397403.
59. Relton, CL, Wilding, CS, Jonas, PA et al. (2003) Genetic susceptibility to neural tube defect pregnancy varies with offspring phenotype. Clin Genet 64, 424428.
60. Khoury, MJ, Erickson, JD & James, LM (1982) Etiologic heterogeneity of neural tube defects: clues from epidemiology. Am J Epidemiol 115, 358548.
61. Detrait, ER, George, TM, Etchevers, HC et al. (2005) Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol Teratol 27, 515524.
62. Elwood, JM, Little, J & Elwood, JH (1992) Epidemiology and Control of Neural Tube Defects. Oxford: Oxford University Press.
63. Bell, KN & Oakley, GP Jr (2009) Update on prevention of folic acid-preventable spina bifida and anencephaly. Birth Defects Res A Clin Mol Teratol 85, 102107.

Keywords

Effect on risk of anencephaly of gene–nutrient interactions between methylenetetrahydrofolate reductase C677T polymorphism and maternal folate, vitamin B12 and homocysteine profile

  • Marina Lacasaña (a1) (a2), Julia Blanco-Muñoz (a3), Victor H Borja-Aburto (a4), Clemente Aguilar-Garduño (a5), Miguel Rodríguez-Barranco (a1), José A Sierra-Ramirez (a6) (a7), Carlos Galaviz-Hernandez (a8), Beatriz Gonzalez-Alzaga (a1) and Ricardo Garcia-Cavazos (a6) (a7)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed