Skip to main content Accessibility help

Dietary intakes of 6–24-month-old urban South Island New Zealand children in relation to biochemical iron status

  • Patsy Soh (a1), Elaine L Ferguson (a1), Joanne E McKenzie (a2), Sheila Skeaff (a1), Winsome Parnell (a1) and Rosalind S Gibson (a1)...



To investigate food sources and intakes of iron, and dietary factors associated with serum ferritin levels in 6–24-month-old children.


A cross-sectional survey employing proportionate cluster sampling was conducted in 1998/1999. Dietary intakes were assessed using a non-consecutive 3-day weighed food record. Serum ferritin and C-reactive protein were analysed from non-fasting venepuncture blood samples and general sociodemographic data were collected.


Cities of Christchurch, Dunedin and Invercargill, New Zealand.


Randomly selected healthy 6–24-month-old non-breast-feeding children (n=226).


Total iron intakes (±standard deviation (SD)) among non-breast-feeding infants (<12 months old; n=42) and toddlers (≥12 months old; n=184) were 8.4±2.9 mg day−1 and 5.0±2.5 mg day−1, respectively. Fifteen per cent of infants and 66% of toddlers were at risk of inadequate iron intakes. Main sources of dietary iron were infant formula (60%) for infants and cereals (31%) for toddlers. Meat contributed on average 2% and 10% of dietary iron in the infant and toddler diets, respectively. Dietary factors positively associated with serum ferritin were intakes of iron and vitamin C, whereas intakes of calcium and dietary fibre were negatively associated. For each 1% increase in percentage of energy from iron-fortified formula concomitant with a 1% decrease from dairy products, there was a 4.2% increased odds of replete iron stores (ferritin ≥20 μg l−1).


Toddlers were at higher risk of sub-optimal iron intakes than infants. Results suggest that a diet high in bioavailable iron is important for optimising the iron stores of young children in New Zealand.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary intakes of 6–24-month-old urban South Island New Zealand children in relation to biochemical iron status
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary intakes of 6–24-month-old urban South Island New Zealand children in relation to biochemical iron status
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary intakes of 6–24-month-old urban South Island New Zealand children in relation to biochemical iron status
      Available formats


Corresponding author

*Corresponding author: Email


Hide All
1Booth, IW, Aukett, M. Iron deficiency anaemia in infancy and early childhood. Arch. Dis. Child. 1997; 76: 549–54.
2Skinner, JD, Carruth, BR, Houck, KS, Coletta, F, Cotter, R, Ott, D, McLeod, M. Longitudinal study of nutrient and food intakes of infants aged 2 to 24 months. J. Am. Diet. Assoc. 1997; 97: 496504.
3Gregory, JR, Collins, DJ, Davies, PSW. National Diet and Nutrition Survey: Children aged 1.5–4.5 years. Vol. 1. London: HMSO, 1995.
4Hercberg, S, Papoz, L, Galan, P, Guery, MF, Farnier, MA, Rossignol, C. Iron status and dietary pattern in young children. Nutr. Rep. Intern. 1995; 35: 307–15.
5Michaelsen, KF, Milman, N, Samuelson, G. A longitudinal study of iron status in healthy Danish infants: effects of early iron status, growth velocity and dietary factors. Acta Paediatr. 1995; 84: 1035–44.
6Perrson, , Johansson, E, Samuelson, G. Dietary intake of weaned infants in a Swedish community. Hum. Nutr. Appl. Nutr. 1984; 38: 247–54.
7Preziosi, P, Hercberg, S, Galan, P, Devanlay, M, Cherouvier, F, Dupin, H. Iron status of a healthy French population: factors determining biochemical markers. Ann. Nutr. Metab. 1994; 38: 192202.
8Wham, C. Dietary iron intake and iron status of young children. Asia Pacific J. Clin. Nutr. 1996; 5: 196200.
9Yeung, DL, Pennell, MD, Leung, M, Hall, J, Anderson, GH. Iron intake of infants: the importance of infant cereals. Cdn. Med. Assoc. J. 1981; 125: 9991002.
10Ferguson, E, Scanlon, W. Dietary assessment techniques for preschool children. NZDA.Proc. 2000; 5: 80–3.
11Marshall, R. Diet Entry and Storage, Diet Cruncher. A Batch Processing Diet Analysis System for the Macintosh. Dunedin: NutriComp, 1997.
12New Zealand Institute of Crop and Food Research. FOODfiles. Data Files of the New Zealand Food Composition Database, version 9.0. Palmerston North, New Zealand: New Zealand Institute for Crop and Food Research, 1998.
13Murphy, SP, Beaton, GH, Calloway, DH. Estimated mineral intakes of toddlers: predicted prevalence of inadequacy in village populations in Egypt, Kenya, and Mexico. Am. J. Clin. Nutr. 1992; 56: 565–72.
14Carriquiry, AL. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 1999; 2: 2333.
15Department of Health. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects. London: HMSO, 1991.
16Nusser, SM, Carriquiry, AL, Dodd, KW, Fuller, WA. A semiparametric transformation approach to estimating usual daily intake distributions. J. Am. Stat. Assoc. 1991; 91: 1440–9.
17Singer, JI, Bachino, JJ, Chabali, R. Selected laboratory in pediatric emergency care. Emerg. Med. Clin. North Am. 1986; 4: 377–96.
18Bathgate, M, Alexander, D, Mitikulena, A, Borman, B, Roberts, A, Grigg, M. The Health of Pacific Islands People. Wellington, New Zealand: Public Health Commission, 1994.
19Gibson, RS. Principles of Nutrition Assessment. New York: Oxford University Press, 1990.
20Mackerras, D. Energy adjustment: the concepts underlying the debate. J. Clin. Epidemiol. 1996; 49: 957–62.
21Brault-Dubac, M, Nadeau, M, Dickie, J. Iron status of French-Canadian children: a three year follow-up study. Hum. Nutr. Appl. Nutr. 1983 37A: 210–21.
22Kylberg, E, Hofvander, Y, Sjölin, S. Diets of healthy Swedish children 4–24 months old. Acta Paediatr. 1986; 75: 937–46.
23Kjaernes, U, Botten, G, Lande, B, Nilsson, D. Food intake and patterns of feeding of Norwegian infants. Eur. J. Clin. Nutr. 1988; 42: 249–60.
24McDowell, MA, Briefel, RR, Alaimo, K, Bischof, AM, Caughman, CR, Carroll, MD, Loria, CM, Johnson, CL. Energy and macronutrient intakes of persons ages two months and over in the United States: Third National Health and Nutrition Examination Survey, Phase 1, 1988–91. Vital Health Statistics of the Centres for Disease Control and Prevention. National Centre for Health Statistics. 1994; 255: 424.
25Piccciano, MF, Smiciklas-Wright, H, Birch, LL, Mitchell, DC, Murray-Kolb, L, McConahy, KL. Nutritional guidance is needed during the dietary transition in early childhood. Pediatrics 2000; 106: 109–14.
26Fairweather-Tait, S, Fox, T, Wharf, G, Eagles, J. The bioavailability of iron in different weaning foods and the enhancing effect of a fruit drink containing ascorbic acid. Pediatr. Res. 1995; 37: 389–94.
27Hallberg, L, Rossander-Hultén, L, Brune, M, Gleerup, A. Calcium and iron absorption: mechanism of action and nutritional importance. Eur. J. Clin. Nutr. 1992; 46: 317–27.
28Hallberg, L. Iron absorption and iron deficiency. Hum. Nutr. Clin. Nutr. 1982; 36: 259–78.
29Mira, M, Alperstein, G, Karr, M, Rammuthugala, G, Causer, J, Niec, A, Lilburne, A-M. Haem iron intake in 12–36 month old children depleted in iron: case–control study. BMJ 1996; 312: 881–3.
30Karr, M, Alperstein, G, Causer, J, Mira, M, Lammi, A, Fett, MJ. Iron status and anaemia in preschool children in Sydney. Aus. N.Z. J. Public Health 1996; 20: 618–22.
31Engelmann, MD, Sandström, B, Michaelsen, KF. Meat intake and iron status in late infancy: an intervention study. J. Pediatr. Gastroenterol. Nutr. 1998; 26: 2633.
32Engelmann, MD, Davidsson, L, Sandström, B, Walczyk, T, Hurrell, RF, Michaelsen, KF. The influence of meat on nonheme iron absorption in infants. Pediatr. Res. 1998; 43: 768–73.
33Greene-Finestone, L, Feldman, W, Luke, B. Prevalence and risk factors of iron depletion and iron deficiency anemia among infants in Ottawa-Carleton. J. Cdn. Diet. Assoc. 1991; 52: 20–3.
34Meeting the iron needs of infants and young children: an update. Can. Med. Assoc. J. 1991; 144: 1451–4.
35Male, C, Persson, , Freeman, V, Guerra, A, van't Hot, MA, Haschke, Fand the Euro-Growth Iron Study Group. Prevalence of iron deficiency in 12-mo-old infants from 11 European areas and influence of dietary factors on iron status (Euro-Growth study). Acta Paediatr. 2001; 88: 1333–7.
36Freeman, VE, Mulder, J, van't Hof, MA, Hoey, HMV, Gibney, MJ. A longitudinal study of the iron status in children at 12, 24 and 36 months. Public Health Nutr. 1998; 1: 93100.
37Daly, A, MacDonald, A, Aukett, A, Williams, J, Wolf, A, Davidson, J, Booth, IW. Prevention of anaemia in inner city toddlers by an iron supplemented cows' milk formula. Arch. Dis. Child. 1996; 75: 916.
38Fuchs, GJ, Farris, RP, DeWier, M, Hutchinson, SW, Warrier, R, Doucet, H, Suskind, RM. Iron status and intake of older infants fed formula vs cow milk with cereal. Am. J. Clin. Nutr. 1993; 58: 343–8.
39Gill, DG, Vincent, S, Segal, DS. Follow-on formula in the prevention of iron deficiency: a multicentre study. Acta Paediatr. 1997; 86: 683–9.
40Morley, R, Abbott, R, Fairweather-Tait, S, MacFadyen, U, Stephenson, T, Lucas, A. Iron fortified follow on formula from 9 to 18 months improves iron status but not development or growth: a randomised trial. Arch. Dis. Child. 1999; 81: 247–52.
41Singhal, A, Morely, R, Abbott, R, Fairweather-Tait, S, Stephenson, T, Lucas, A. Clinical safety of iron-fortified formulas. Pediatrics 2000; 105: 16.
42American Academy of Pediatrics Committee on Nutrition. Iron fortification of infant formulas. Pediatrics 1999; 104: 119–23.
43Lonnerdal, B, Hernell, O. Iron, zinc, copper and selenium status of breast-fed infants and infants fed trace element fortified milk-based infant formula. Acta Paediatr. 1994; 83: 367–73.
44Lund, EK, Wharf, SG, Fairweather-Tait, S, Johnson, IT. Oral ferrous sulfate supplements increase the free radical-generating capacity of feces from healthy volunteers. Am. J. Clin. Nutr. 1999; 69: 250–5.
45Statistics New Zealand. Census 96 with Supermap3 and for GIS and Mapping (Computer). Wellington, New Zealand/ Melbourne, Victoria: Statistics New Zealand, Space-Time Research, 1997.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed