Skip to main content Accessibility help
×
Home

Consumption of energy-dense diets in relation to metabolic syndrome and inflammatory markers in Iranian female nurses

  • Leila Azadbakht (a1) (a2) (a3) (a4), Fahimeh Haghighatdoost (a5), Ammar Hassanzadeh Keshteli (a6), Bagher Larijani (a7) and Ahmad Esmaillzadeh (a2) (a3) (a4) (a8)...

Abstract

Objective

To examine the relationship between dietary energy density (DED) and risk of metabolic syndrome (MetS), its components and inflammatory markers.

Design

Cross-sectional study. Dietary intakes were assessed using a validated dish-based semi-quantitative FFQ. DED was calculated by dividing energy intake (kcal/d) by the total weight of foods only (g/d). MetS was defined based on the National Cholesterol Education Program Adult Treatment Panel III criteria. All associations were examined in the quartiles of DED, with higher quartiles indicating more energy-dense diets.

Setting

Isfahan, Iran.

Subjects

Female nurses (n 1036) aged >30 years.

Results

After controlling for potential confounders, individuals in the top quartile of DED had 78 % greater chance of MetS compared with those in the first (OR=1·78; 95 % CI 1·36, 2·98; P<0·001). Individuals in the highest quartile of DED were more likely to be abdominally obese (OR=1·51; 95 % CI 1·00, 2·63) and have hypertriacylglycerolaemia (OR=2·95; 95 % CI 1·58, 3·91) and low HDL cholesterol levels (OR=1·36; 95 % CI 1·17, 2·54) compared with those in the lowest quartile. Mean concentration of plasma high-sensitivity C-reactive protein (hs-CRP) across increasing quartiles of DED was 1·7, 1·7, 2·0, 2·4 mg/l (P for trend=0·04). Such increasing concentrations across increasing quartiles of DED were also seen for TNF-α (4·1, 4·5, 4·5, 4·8 ng/l; P for trend=0·03) and IL-6 (1·6, 1·6, 1·5, 2·5 ng/l; P for trend <0·01).

Conclusions

Consumption of high-energy-dense foods was associated with increased chance of MetS, most of its features and inflammatory markers including hs-CRP, TNF-α and IL-6.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Consumption of energy-dense diets in relation to metabolic syndrome and inflammatory markers in Iranian female nurses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Consumption of energy-dense diets in relation to metabolic syndrome and inflammatory markers in Iranian female nurses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Consumption of energy-dense diets in relation to metabolic syndrome and inflammatory markers in Iranian female nurses
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email Esmaillzadeh@hlth.mui.ac.ir

References

Hide All
1. O’Neill, S & O’Driscoll, L (2015) Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev 16, 112.
2. Al Thani, M, Al Thani, AA, Al-Chetachi, W et al. (2016) A ‘high risk’ lifestyle pattern is associated with metabolic syndrome among Qatari women of reproductive age: a cross-sectional national study. Int J Mol Sci 17, E698.
3. Kant, AK & Graubard, BI (2005) Energy density of diets reported by American adults: association with food group intake, nutrient intake, and body weight. Int J Obes (Lond) 29, 950956.
4. Vernarelli, JA, Mitchell, DC, Rolls, BJ et al. (2015) Dietary energy density is associated with obesity and other biomarkers of chronic disease in US adults. Eur J Nutr 54, 5965.
5. Bes-Rastrollo, M, van Dam, RM, Martinez-Gonzalez, MA et al. (2008) Prospective study of dietary energy density and weight gain in women. Am J Clin Nutr 88, 769777.
6. Savage, JS, Marini, M & Birch, LL (2008) Dietary energy density predicts women’s weight change over 6 y. Am J Clin Nutr 88, 677684.
7. Melanson, KJ, Summers, A, Nguyen, V et al. (2012) Body composition, dietary composition, and components of metabolic syndrome in overweight and obese adults after a 12-week trial on dietary treatments focused on portion control, energy density, or glycemic index. Nutr J 11, 57.
8. Ledikwe, JH, Blanck, HM, Kettel Khan, L et al. (2006) Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr 83, 13621368.
9. Rouhani, MH, Haghighatdoost, F, Surkan, PJ et al. (2016) Associations between dietary energy density and obesity: a systematic review and meta-analysis of observational studies. Nutrition 32, 10371047.
10. Esmaillzadeh, A & Azadbakht, L (2011) Dietary energy density and the metabolic syndrome among Iranian women. Eur J Clin Nutr 65, 598605.
11. Wang, J, Luben, R, Khaw, KT et al. (2008) Dietary energy density predicts the risk of incident type 2 diabetes: the European Prospective Investigation of Cancer (EPIC)-Norfolk Study. Diabetes Care 31, 21202125.
12. Esmaillzadeh, A, Boroujeni, HK & Azadbakht, L (2012) Consumption of energy-dense diets in relation to cardiometabolic abnormalities among Iranian women. Public Health Nutr 15, 868875.
13. Wang, J, Zhang, W, Sun, L et al. (2013) Dietary energy density is positively associated with risk of pancreatic cancer in urban Shanghai Chinese. J Nutr 143, 16261629.
14. van den Berg, SW, van der, AD, Spijkerman, AM et al. (2013) The association between dietary energy density and type 2 diabetes in Europe: results from the EPIC-InterAct Study. PLoS One 8, e59947.
15. Tabesh, M, Hosseinzadeh, MJ, Tabesh, M et al. (2013) Effects of dietary energy density on serum adipocytokine levels in diabetic women. Horm Metab Res 45, 834839.
16. Willett, W (2012) Nutritional Epidemiology , 3rd ed. New York: Oxford University Press.
17. Keshteli, A, Esmaillzadeh, A, Rajaie, S et al. (2014) A dish-based semi-quantitative food frequency questionnaire for assessment of dietary intakes in epidemiologic studies in Iran: design and development. Int J Prev Med 5, 2936.
18. Zaribaf, F, Falahi, E, Barak, F et al. (2014) Fish consumption is inversely associated with the metabolic syndrome. Eur J Clin Nutr 68, 474480.
19. Ghaffarpour, M, Houshiar-Rad, A & Kianfar, H (1999) The Manual for Household Measures, Cooking Yields Factors and Edible Portion of Foods. Tehran: Nashre Olume Keshavarzy.
20. Ledikwe, JH, Blanck, HM, Khan, LK et al. (2005) Dietary energy density determined by eight calculation methods in a nationally representative United States population. J Nutr 135, 273278.
21. Johnson, L, Wilks, DC, Lindroos, AK et al. (2009) Reflections from a systematic review of dietary energy density and weight gain: is the inclusion of drinks valid? Obes Rev 10, 681692.
22. Esmaillzadeh, A, Mirmiran, P & Azizi, F (2006) Comparative evaluation of anthropometric measures to predict cardiovascular risk factors in Tehranian adult women. Public Health Nutr 9, 6169.
23. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 24862497.
24. Mendoza, JA, Drewnowski, A & Christakis, DA (2007) Dietary energy density is associated with obesity and the metabolic syndrome in US adults. Diabetes Care 30, 974979.
25. Azadbakht, L & Esmaillzadeh, A (2012) Dietary energy density is favorably associated with dietary diversity score among female university students in Isfahan. Nutrition 28, 991995.
26. Radhika, G, Van Dam, RM, Sudha, V et al. (2009) Refined grain consumption and the metabolic syndrome in urban Asian Indians (Chennai Urban Rural Epidemiology Study 57). Metabolism 58, 675681.
27. Zhou, YJ, Tang, YS, Song, YL et al. (2013) Saturated fatty acid induces insulin resistance partially through nucleotide-binding oligomerization domain 1 signaling pathway in adipocytes. Chin Med Sci J 28, 2112117.
28. Anderson, AL, Harris, TB, Tylavsky, FA et al. (2012) Dietary patterns, insulin sensitivity and inflammation in older adults. Eur J Clin Nutr 66, 1824.
29. Azadbakht, L, Mirmiran, P & Azizi, F (2005) Dietary diversity score is favorably associated with the metabolic syndrome in Tehranian adults. Int J Obes (Lond) 29, 13611367.
30. Mirmiran, P, Azadbakht, L & Azizi, F (2007) Dietary behaviour of Tehranian adolescents does not accord with their nutritional knowledge. Public Health Nutr 10, 897901.
31. Azadbakht, L, Mirmiran, P, Hosseini, F et al. (2005) Diet quality status of most Tehranian adults needs improvement. Asia Pac J Clin Nutr 14, 163168.
32. Vergnaud, A-C, Estaquio, C, Czernichow, S et al. (2009) Energy density and 6-year anthropometric changes in a middle-aged adult cohort. Br J Nutr 102, 302309.
33. Johnson, L, Mander, AP, Jones, LR et al. (2008) A prospective analysis of dietary energy density at age 5 and 7 years and fatness at 9 years among UK children. Int J Obes (Lond) 32, 586593.
34. Cavicchia, PP, Steck, SE, Hurley, TG et al. (2009) A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J Nutr 139, 23652372.
35. Sartorelli, DS, Freire, RD, Ferreira, SR et al. (2005) Dietary fiber and glucose tolerance in Japanese Brazilians. Diabetes Care 28, 22402242.
36. Schwab, U, Lauritzen, L, Tholstrup, T et al. (2014) Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res 2014, 58.
37. Bjermo, H, Iggman, D, Kullberg, J et al. (2012) Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr 95, 10031012.
38. Haghighatdoost, F, Karimi, G, Esmaillzadeh, A et al. (2012) Sleep deprivation is associated with lower diet quality indices and higher rate of general and central obesity among young female students in Iran. Nutrition 28, 11461150.
39. Kim, MJ, Son, KH, Park, HY et al. (2013) Association between shift work and obesity among female nurses: Korean Nurses’ Survey. BMC Public Health 13, 1204.
40. Chaput, JP, McNeil, J, Despres, JP et al. (2013) Short sleep duration as a risk factor for the development of the metabolic syndrome in adults. Prev Med 57, 872877.
41. Ohkuma, T, Fujii, H, Iwase, M et al. (2014) U-shaped association of sleep duration with metabolic syndrome and insulin resistance in patients with type 2 diabetes: the Fukuoka Diabetes Registry. Metabolism 63, 484491.

Keywords

Consumption of energy-dense diets in relation to metabolic syndrome and inflammatory markers in Iranian female nurses

  • Leila Azadbakht (a1) (a2) (a3) (a4), Fahimeh Haghighatdoost (a5), Ammar Hassanzadeh Keshteli (a6), Bagher Larijani (a7) and Ahmad Esmaillzadeh (a2) (a3) (a4) (a8)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed