Skip to main content Accessibility help

Effectiveness of school-based nutrition interventions in sub-Saharan Africa: a systematic review

Published online by Cambridge University Press:  10 July 2020

Paul Kyere
School of Medicine, Griffith University, Southport, Gold Coast4222, Queensland, Australia
J Lennert Veerman
School of Medicine, Griffith University, Southport, Gold Coast4222, Queensland, Australia
Patricia Lee
School of Medicine, Griffith University, Southport, Gold Coast4222, Queensland, Australia
Donald E Stewart
School of Medicine, Griffith University, Southport, Gold Coast4222, Queensland, Australia



To evaluate the effect of school-based nutrition interventions (SBNI) involving schoolchildren and adolescents in sub-Saharan Africa (SSA) on child nutrition status and nutrition-related knowledge, attitudes and behaviour.


A systematic review on published school nutrition intervention studies of randomised controlled trials, controlled clinical trials, controlled before-and-after studies or quasi-experimental designs with control. Nine electronic bibliographic databases were searched. To be included, interventions had to involve changes to the school’s physical and social environments, to the school’s nutrition policies, to teaching curriculum to incorporate nutrition education and/or to partnership with parents/community.


Schools in SSA.


School-aged children and adolescents, aged 5–19 years.


Fourteen studies met our inclusion criteria. While there are few existing studies of SBNI in SSA, the evidence shows that food supplementation/fortification is very effective in reducing micronutrient deficiencies and can improve nutrition status. Secondly, school nutrition education can improve nutrition knowledge, but this may not necessarily translate into healthy nutrition behaviour, indicating that nutrition knowledge may have little impact without a facilitating environment. Results regarding anthropometry were inconclusive; however, there is evidence for the effectiveness of SBNI in improving cognitive abilities.


There is enough evidence to warrant further trials of SBNI in SSA. Future research should consider investigating the impact of SBNI on anthropometry and nutrition behaviour, focusing on the role of programme intensity and/or duration. To address the high incidence of micronutrient deficiencies in low- and middle-income countries, food supplementation strategies currently available to schoolchildren should be expanded.

Review Article
© The Author(s), 2020

Access options

Get access to the full version of this content by using one of the access options below.


Deceased author.


Poulton, R, Caspi, A, Milne, BJet al. (2002) Association between children’s experience of economic disadvantage and adult health: a life-course study. Lancet 360, 16401645.CrossRefGoogle Scholar
Galobardes, B, Smith, GD & Lynch, JW (2006) Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol 16, 91104.CrossRefGoogle ScholarPubMed
Ness, A, Maynard, M, Frankel, Set al. (2005) Diet in childhood and adult cardiovascular and all cause mortality: the Boyd Orr cohort. Heart 91, 894898.CrossRefGoogle ScholarPubMed
Kessler, RC, McLaughlin, KA, Green, JGet al. (2010) Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. Br J Psychiatr 197, 378385.CrossRefGoogle ScholarPubMed
Maynard, M, Gunnell, D, Emmett, Pet al. (2003) Fruit, vegetables, and antioxidants in childhood and risk of adult cancer: the Boyd Orr cohort. J Epidemiol Commun Health 57, 218225.CrossRefGoogle ScholarPubMed
Doak, C, Visscher, T, Renders, Cet al. (2006) The prevention of overweight and obesity in children and adolescents: a review of interventions and programmes. Obesity Rev 7, 111136.CrossRefGoogle ScholarPubMed
Nicklas, T & Hayes, D (2008) Position of the American Dietetic Association: nutrition guidance for healthy children ages 2 to 11 years. J Am Diet Assoc 108, 10381044, 1046–1037.Google ScholarPubMed
WHO (2017) Child and Adolescent Health and Nutrition. African Regional Office. (accessed July 2020).Google Scholar
UNICEF (2015) State of the World’s Children Statistical Report. New York, NY: UNICEF.Google Scholar
Polit, E (1993) Iron deficiency and cognitive performance. Annu Rev Nutr 13, 521537.Google Scholar
Leroy, JL, Ruel, M, Habicht, J-Pet al. (2014) Linear growth deficit continues to accumulate beyond the first 1000 days in low-and middle-income countries: global evidence from 51 national surveys. J Nutr 144, 14601466.CrossRefGoogle ScholarPubMed
Hughes, D & Bryan, J (2003) The assessment of cognitive performance in children: considerations for detecting nutritional influences. Nutr Rev 61, 413422.10.1301/nr.2003.dec.413-422CrossRefGoogle ScholarPubMed
Marmot, M, Friel, S, Bell, Ret al. (2008) Closing the gap in a generation: health equity through action on the social determinants of health. Lancet 372, 16611669.CrossRefGoogle Scholar
Torres, RM (2001) What happened at the world education forum? Adult Educ Develop 56, 4568.Google Scholar
Sarr, B, Fernandes, M, Banham, Let al. (2017) The evolution of school health and nutrition in the education sector 2000–2015 in sub-Saharan Africa. Front Public Health 4, 271.CrossRefGoogle ScholarPubMed
Wang, D & Stewart, D (2013) The implementation and effectiveness of school-based nutrition promotion programmes using a health-promoting schools approach: a systematic review. Public Health Nutr 16, 10821100.10.1017/S1368980012003497CrossRefGoogle ScholarPubMed
Leslie, J & Jamison, DT (1990) Health and nutrition considerations in education planning: educational consequences of health problems among school-age children. Food Nutr Bull 12, 113.CrossRefGoogle Scholar
El Harake, M, Kharroubi, S, Hamadeh, Set al. (2018) Impact of a pilot school-based nutrition intervention on dietary knowledge, attitudes, behavior and nutritional status of syrian refugee children in the Bekaa, Lebanon. Nutrients 10, 913.CrossRefGoogle ScholarPubMed
Del Rosso, JM & Marek, T (1996) Class Action: Improving School Performance in the Developing World through Better Health, Nutrition and Population. Directions in development. Washington DC: World Bank.CrossRefGoogle Scholar
UNICEF (2000) Focusing Resources on Effective School Health: A FRESH Start to Enhancing the Quality and Equity of Education. World Education Forum 2000, Final Report. UNESDOC Digital Library. (accessed July 2020).Google Scholar
Verjans-Janssen, SR, van de Kolk, I, Van Kann, DHet al. (2018) Effectiveness of school-based physical activity and nutrition interventions with direct parental involvement on children’s BMI and energy balance-related behaviors: a systematic review. PLoS One 13, e0204560.CrossRefGoogle ScholarPubMed
Macnab, AJ, Gagnon, FA & Stewart, D (2014) Health promoting schools: consensus, strategies, and potential. Health Educ 114, 170185.CrossRefGoogle Scholar
Langford, R, Bonell, C, Jones, Het al. (2015) The World Health Organization’s Health Promoting Schools framework: a Cochrane systematic review and meta-analysis. BMC Public Health 15, 130.CrossRefGoogle ScholarPubMed
UN (2015) The Millennium Development Goals Report. New York, NY: United Nations.Google Scholar
Akombi, BJ, Agho, KE, Merom, Det al. (2017) Child malnutrition in sub-Saharan Africa: a meta-analysis of demographic and health surveys (2006–2016). PLoS One 12, e0177338.CrossRefGoogle Scholar
WHO (2018) Accelerating Nutrition Improvements in sub-Saharan Africa (ANI). (accessed July 2020).Google Scholar
Lock, K, Pomerleau, J, Causer, Let al. (2005) The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy on diet. Bull World Health Organ 83, 100108.Google ScholarPubMed
Gelli, A, Masset, E, Folson, Get al. (2016) Evaluation of alternative school feeding models on nutrition, education, agriculture and other social outcomes in Ghana: rationale, randomised design and baseline data. Trials 17, 37.CrossRefGoogle ScholarPubMed
WHO (1997) WHO Expert Committee on Comprehensive School Health Education and Promotion. Promoting Health through Schools. WHO Technical Report Series no. 870, ISBN: 92 4 129870 8.Google Scholar
Steyn, NP, Lambert, E, Parker, Wet al. (2009) A review of school nutrition interventions globally as an evidence base for the development of the HealthKick programme in the Western Cape, South Africa. South Afr J Clin Nutr 22, 145152.Google Scholar
Verstraeten, R, Roberfroid, D, Lachat, Cet al. (2012) Effectiveness of preventive school-based obesity interventions in low-and middle-income countries: a systematic review. Am J Clin Nutr 96, 415438.CrossRefGoogle ScholarPubMed
Howerton, MW, Bell, BS, Dodd, KWet al. (2007) School-based nutrition programs produced a moderate increase in fruit and vegetable consumption: meta and pooling analyses from 7 studies. J Nutr Educ Behav 39, 186196.CrossRefGoogle ScholarPubMed
Kristjansson, B, Petticrew, M, MacDonald, Bet al. (2007) School feeding for improving the physical and psychosocial health of disadvantaged students. Cochrane Database Syst Rev issue 1, CD004676.CrossRefGoogle Scholar
De Villiers, A, Steyn, NP, Draper, CEet al. (2016) Primary school children’s nutrition knowledge, self-efficacy, and behavior, after a three-year healthy lifestyle intervention (HealthKick). Public Health 26, 171.Google Scholar
Moher, D, Liberati, A, Tetzlaff, Jet al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6, e1000097.CrossRefGoogle ScholarPubMed
Zeba, AN, Martin Prevel, Y, Some, ITet al. (2006) The positive impact of red palm oil in school meals on vitamin A status: study in Burkina Faso. Nutr J 5, 17.CrossRefGoogle ScholarPubMed
Van Stuijvenberg, ME, Kvalsvig, JD, Faber, Met al. (1999) Effect of iron-, iodine-, and beta-carotene-fortified biscuits on the micronutrient status of primary school children: a randomized controlled trial. Am J Clin Nutr 69, 497503.10.1093/ajcn/69.3.497CrossRefGoogle ScholarPubMed
Van Stuijvenberg, ME, Dhansay, MA, Lombard, CJet al. (2001) The effect of a biscuit with red palm oil as a source of β-carotene on the vitamin A status of primary school children: a comparison with β-carotene from a synthetic source in a randomised controlled trial. Eur J Clin Nutr 55, 657662.CrossRefGoogle Scholar
Kugo, M, Keter, L, Maiyo, Aet al. (2018) Fortification of Carica papaya fruit seeds to school meal snacks may aid Africa mass deworming programs: a preliminary survey. BMC Complement Altern Med 18, 327.Google ScholarPubMed
Higgins, J, Churchill, R, Chandler, Jet al. (2017) Cochrane Handbook for Systematic Reviews of Interventions version 5.2.0 (updated June 2017). (accessed July 2020). Cochrane.Google Scholar
Effective Public Health Practice Project E (2017) Quality Assessment Tool for Quantitative Studies. (accessed July 2020).Google Scholar
Van Der Hoeven, M, Faber, M, Osei, Jet al. (2015) Effect of African leafy vegetables on the micronutrient status of mildly deficient farm-school children in South Africa: a randomized controlled study. Public Health Nutr 19, 935945.CrossRefGoogle ScholarPubMed
Taljaard, C, Covic, NM, van Graan, AEet al. (2013) Effects of a multi-micronutrient-fortified beverage, with and without sugar, on growth and cognition in South African schoolchildren: a randomised, double-blind, controlled intervention. Br J Nutr 110, 22712284.CrossRefGoogle ScholarPubMed
Oosthuizen, D, Oldewage-Theron, WH & Napier, C (2011) The impact of a nutrition programme on the dietary intake patterns of primary school children. South Afr J Clin Nutr 24, 7581.CrossRefGoogle Scholar
Abrams, SA, Mushi, A, Allen, Let al. (2003) A multinutrient-fortified beverage enhances the nutritional status of children in Botswana. J Nutr 133, 18341840.CrossRefGoogle ScholarPubMed
Ash, DM, Tatala, SR, Frongillo, EA Jr et al. (2003) Randomized efficacy trial of a micronutrient-fortified beverage in primary school children in Tanzania. Am J Clin Nutr 77, 891898.10.1093/ajcn/77.4.891CrossRefGoogle ScholarPubMed
Eboh, LO & Boye, TE (2006) Nutrition knowledge and food choices of primary school pupils in the Niger – Delta region Nigeria. Pak J Nutr 5, 308311.Google Scholar
Jemmott, JB III, Jemmott, LS, O’Leary, Aet al. (2011) Cognitive-behavioural health-promotion intervention increases fruit and vegetable consumption and physical activity among South African adolescents: a cluster-randomised controlled trial. Psychol Health 26, 167185.CrossRefGoogle ScholarPubMed
Lagerkvist, CJ, Okello, JJ, Adekambi, Set al. (2018) Goal-setting and volitional behavioural change: results from a school meals intervention with vitamin-A biofortified sweetpotato in Nigeria. Appetite 129, 113124.Google ScholarPubMed
Whaley, SE, Sigman, M, Neumann, Cet al. (2003) The impact of dietary intervention on the cognitive development of Kenyan school children. J Nutr 133, 3965S3971S.CrossRefGoogle ScholarPubMed
Fernandes, M, Folson, G, Aurino, Eet al. (2017) A free lunch or a walk back home? The school food environment and dietary behaviours among children and adolescents in Ghana. Food Sec 9, 10731090.CrossRefGoogle Scholar
Doku, D, Koivusilta, L, Raisamo, Set al. (2013) Socio-economic differences in adolescents’ breakfast eating, fruit and vegetable consumption and physical activity in Ghana. Public Health Nutr 16, 864872.Google ScholarPubMed
Abrahams, Z, De Villiers, A, Steyn, NPet al. (2011) What’s in the lunchbox? Dietary behaviour of learners from disadvantaged schools in the Western Cape, South Africa. Public Health Nutr 14, 17521758.CrossRefGoogle ScholarPubMed
Teferi, DY, Atomssa, GE & Mekonnen, TC (2018) Overweight and undernutrition in the cases of school-going adolescents in Wolaita Sodo Town, Southern Ethiopia: cross-sectional study. J Nutr Metab 2018, 8678561.Google ScholarPubMed
Faber, M, Laurie, S, Maduna, Met al. (2014) Is the school food environment conducive to healthy eating in poorly resourced South African schools? Public Health Nutr 17, 12141223.Google ScholarPubMed
Beery, M, Adatia, R, Segantin, Oet al. (2014) School food gardens: fertile ground for education. Health Educ 114, 281292.CrossRefGoogle Scholar
Masset, E & Gelli, A (2013) Improving community development by linking agriculture, nutrition and education: design of a randomised trial of ‘home-grown’ school feeding in Mali. Trials 14, 5555.CrossRefGoogle ScholarPubMed
Sherman, J & Muehlhoff, E (2007) Developing a nutrition and health education program for primary schools in Zambia. J Nutr Educ Behavior 39, 335342.CrossRefGoogle ScholarPubMed
Takyi, EE (1999) Children’s consumption of dark green, leafy vegetables with added fat enhances serum retinol. J Nutr 129, 15491554.CrossRefGoogle ScholarPubMed
Nawiri, MP, Nyambaka, H & Murungi, JI (2013) Sun-dried cowpeas and amaranth leaves recipe improves β-carotene and retinol levels in serum and hemoglobin concentration among preschool children. Eur J Nutr 52, 583589.CrossRefGoogle ScholarPubMed
Kazianga, H, de Walque, D & Alderman, H (2014) School feeding programs, intrahousehold allocation and the nutrition of siblings: evidence from a randomized trial in rural Burkina Faso. J Dev Econ 106, 1534.CrossRefGoogle Scholar
Batra, P, Schlossman, N, Balan, Iet al. (2016) A randomized controlled trial offering higher- compared with lower-dairy second meals daily in preschools in Guinea-Bissau demonstrates an attendance-dependent increase in weight gain for both meal types and an increase in mid-upper arm circumference for the higher-dairy meal. J Nutr 146, 124132.CrossRefGoogle Scholar
WHO (2006) WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. World Health Organization. (accessed July 2020).Google Scholar
Townsend, MS (2006) Obesity in low-income communities: prevalence, effects, a place to begin. J Am Diet Assoc 206, 3437.CrossRefGoogle Scholar
Booth, S (2006) Eating rough: food sources and acquisition practices used by homeless youth in Adelaide, South Australia. Public Health Nutr 9(2), 212218.CrossRefGoogle ScholarPubMed
Turner, C, Kalamatianou, S, Drewnowski, Aet al. (2020) Food environment research in low-and middle-income countries: a systematic scoping review. Adv Nutr 11(2), 387397.Google ScholarPubMed

Kyere et al. supplementary material

Tables S1-S4

File 57 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 9
Total number of PDF views: 109 *
View data table for this chart

* Views captured on Cambridge Core between 10th July 2020 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-2crfx Total loading time: 0.494 Render date: 2021-01-19T12:29:46.882Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effectiveness of school-based nutrition interventions in sub-Saharan Africa: a systematic review
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effectiveness of school-based nutrition interventions in sub-Saharan Africa: a systematic review
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effectiveness of school-based nutrition interventions in sub-Saharan Africa: a systematic review
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *