Skip to main content Accessibility help
×
Home

Cross-sectional association between diet quality and cardiometabolic risk by education level in Mexican adults

Published online by Cambridge University Press:  08 July 2019

Nancy López-Olmedo
Affiliation:
Department of Nutrition, Gillings School of Public Health, University of North Carolina, 123 West Franklin Street, CB # 8120 Carolina Square, Chapel Hill, NC 27516-3997, USA
Barry M Popkin
Affiliation:
Department of Nutrition, Gillings School of Public Health, University of North Carolina, 123 West Franklin Street, CB # 8120 Carolina Square, Chapel Hill, NC 27516-3997, USA
Penny Gordon-Larsen
Affiliation:
Department of Nutrition, Gillings School of Public Health, University of North Carolina, 123 West Franklin Street, CB # 8120 Carolina Square, Chapel Hill, NC 27516-3997, USA
Lindsey Smith Taillie
Affiliation:
Department of Nutrition, Gillings School of Public Health, University of North Carolina, 123 West Franklin Street, CB # 8120 Carolina Square, Chapel Hill, NC 27516-3997, USA
Corresponding
E-mail address:

Abstract

Objective:

Understanding the association between diet quality and cardiometabolic risk by education level is important for preventing increased cardiometabolic risk in the Mexican population, especially considering pre-existing disparities in diet quality. The present study examined the cross-sectional association of overall diet quality with cardiometabolic risk, overall and by education level, among Mexican men and women.

Design:

Cardiometabolic risk was defined by using biomarkers and diet quality by the Mexican Diet Quality Index. We computed sex-specific multivariable logistic regression models.

Setting:

Mexico.

Participants:

Mexican men (n 634) and women (n 875) participating in the Mexican National Health and Nutrition Survey 2012.

Results:

We did not find associations of diet quality with cardiometabolic risk factors in the total sample or in men by education level. However, we observed that for each 10-unit increase in the dietary quality score, the odds of diabetes risk in women with no reading/writing skills was 0·47 (95 % CI 0·26, 0·85) relative to the odds in women with ≥10 years of school (referent). Similarly, for each 10-unit increase of the dietary quality score, the odds of having three v. no lipid biomarker level beyond the risk threshold in lower-educated women was 0·27 (95 % CI 0·12, 0·63) relative to the odds in higher-educated women.

Conclusions:

Diet quality has a stronger protective association with some cardiometabolic disease risk factors for lower- than higher-educated Mexican women, but no association with cardiometabolic disease risk factors among men. Future research will be needed to understand what diet factors could be influencing the cardiometabolic disease risk disparities in this population.

Type
Research paper
Copyright
© The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Gómez-Dantés, H, Fullman, N, Lamadrid-Figueroa, H et al. (2016) Dissonant health transition in the states of Mexico, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 388, 23862402.CrossRefGoogle Scholar
Arvaniti, F & Panagiotakos, DB (2008) Healthy indexes in public health practice and research: a review. Crit Rev Food Sci Nutr 48, 317327.CrossRefGoogle Scholar
Harmon, BE, Boushey, CJ, Shvetsov, YB et al. (2015) Associations of key diet-quality indexes with mortality in the Multiethnic Cohort: the Dietary Patterns Methods Project. Am J Clin Nutr 101, 587597.CrossRefGoogle Scholar
Schwingshackl, L & Hoffmann, G (2015) Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet 115, 780800.e5.CrossRefGoogle Scholar
Wang, Z, Adair, LS, Cai, J et al. (2017) Diet quality is linked to insulin resistance among adults in China. J Nutr 147, 21022108.Google Scholar
Siervo, M, Lara, J, Chowdhury, S et al. (2015) Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr 113, 115.CrossRefGoogle Scholar
Estruch, R, Ros, E, Salas-Salvado, J et al. (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368, 12791290.CrossRefGoogle Scholar
Shirani, F, Salehi-Abargouei, A & Azadbakht, L (2013) Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition 29, 939947.CrossRefGoogle Scholar
Neale, E, Batterham, M & Tapsell, LC (2016) Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis. Nutr Res 36, 391401.CrossRefGoogle Scholar
AlEssa, HB, Malik, VS, Yuan, C et al. (2016) Dietary patterns and cardiometabolic and endocrine plasma biomarkers in US women, 2. Am J Clin Nutr 105, 432441.CrossRefGoogle Scholar
Hafiane, A & Genest, J (2015) High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin 3, 175188.CrossRefGoogle Scholar
Aleksandrova, K, Mozaffarian, D & Pischon, T (2018) Addressing the perfect storm: biomarkers in obesity and pathophysiology of cardiometabolic risk. Clin Chem 64, 142153.CrossRefGoogle Scholar
Abbasalizad Farhangi, M, Ataie-Jafari, A, Najafi, M et al. (2016) Gender differences in major dietary patterns and their relationship with cardio-metabolic risk factors in a year before coronary artery bypass grafting (CABG) surgery period. Arch Iran Med 19, 470479.Google Scholar
Kavanagh, A, Bentley, RJ, Turrell, G et al. (2010) Socioeconomic position, gender, health behaviours and biomarkers of cardiovascular disease and diabetes. Social Sci Med 71, 11501160.CrossRefGoogle Scholar
López-Olmedo, N, Carriquiry, AL, Rodríguez-Ramírez, S et al. (2016) Usual intake of added sugars and saturated fats is high while dietary fiber is low in the Mexican population. J Nutr 146, issue 9, 1856S1865S.CrossRefGoogle Scholar
Aburto, TC, Pedraza, LS, Sanchez-Pimienta, TG et al. (2016) Discretionary foods have a high contribution and fruit, vegetables, and legumes have a low contribution to the total energy intake of the Mexican population. J Nutr 146, issue 9, 1881S1887S.CrossRefGoogle Scholar
Flores, M, Macias, N, Rivera, M et al. (2009) Energy and nutrient intake among Mexican school-aged children, Mexican National Health and Nutrition Survey 2006. Salud Publica Mex 51, Suppl. 4, S540S550.CrossRefGoogle Scholar
Howe, LD, Galobardes, B, Matijasevich, A et al. (2012) Measuring socio-economic position for epidemiological studies in low-and middle-income countries: a methods of measurement in epidemiology paper. Int J Epidemiol 41, 871886.CrossRefGoogle Scholar
Liberatos, P, Link, BG & Kelsey, JL (1988) The measurement of social class in epidemiology. Epidemiol Rev 10, 87121.CrossRefGoogle Scholar
Lynch, JL & von Hippel, PT (2016) An education gradient in health, a health gradient in education, or a confounded gradient in both? Soc Sci Med 154, 1827.CrossRefGoogle Scholar
Zajacova, A & Lawrence, EM (2018) The relationship between education and health: reducing disparities through a contextual approach. Annu Rev Public Health 39, 273289.CrossRefGoogle Scholar
Friedewald, WT, Levy, RI & Fredrickson, DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 499502.CrossRefGoogle Scholar
International Diabetes Federation (2006) The IDF Consensus Worldwide Definition of Metabolic Syndrome. Brussels: IDF.Google Scholar
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 24862497.CrossRefGoogle Scholar
Pearson, TA, Mensah, GA, Alexander, RW et al. (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499511.CrossRefGoogle Scholar
Blanton, CA, Moshfegh, AJ, Baer, DJ et al. (2006) The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J Nutr 136, 25942599.CrossRefGoogle Scholar
Conway, JM, Ingwersen, LA, Vinyard, BT et al. (2003) Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr 77, 11711178.CrossRefGoogle Scholar
Bonvecchio-Arenas, A, Fernández-Gaxiola, AC, Plazas-Belusteguigoitia, M et al. (2015) Guías Alimentarias y de Actividad Física en Contexto de Sobrepeso y Obesidad en la Población Mexicana (Dietary and Physical Activity Guidelines in the Context of Overweight and Obesity in the Mexican Population). Ciudad de México: Academia Nacional de Medicina.Google Scholar
Rivera, JA, Muñoz-Hernández, O, Rosas-Peralta, M et al. (2008) Consumo de bebidas para una vida saludable: recomendaciones para la población mexicana. Salud Publica Mex 50, 173195.CrossRefGoogle Scholar
Bourges, H, Casanueva, E & Rosado, J (2008) Recomendaciones de Ingestion de Nutrimentos para la Poblacion Mexicana: Bases Fiosiológicas (Recommendations of Nutrient Intake for the Mexican Population: Physiological Basis). Mexico City: Editorial Médica Panamericana.Google Scholar
World Health Organization (2015) Guideline: Sugars Intake for Adults and Children. Geneva: WHO.Google Scholar
World Health Organization/Food and Agriculture Organization of the United Nations (2003) Diet, Nutrition and Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series no. 916. Geneva: WHO.Google Scholar
Sánchez-Pimienta, TG, Batis, C, Lutter, CK et al. (2016) Sugar-sweetened beverages are the main sources of added sugar intake in the Mexican population. J Nutr 146, issue 9, 1888S1896S.CrossRefGoogle Scholar
Vallejo, M, Colin-Ramirez, E, Rivera Mancia, S et al. (2017) Assessment of sodium and potassium intake by 24 h urinary excretion in a healthy Mexican cohort. Arch Med Res 48, 195202.CrossRefGoogle Scholar
Medina, C, Barquera, S & Janssen, I (2013) Validity and reliability of the International Physical Activity Questionnaire among adults in Mexico. Rev Panam Salud Publica 34, 2128.Google Scholar
Loucks, EB, Rehkopf, DH, Thurston, RC et al. (2007) Socioeconomic disparities in metabolic syndrome differ by gender: evidence from NHANES III. Ann Epidemiol 17, 1926.CrossRefGoogle Scholar
McCurley, JL, Penedo, F, Roesch, SC et al. (2017) Psychosocial factors in the relationship between socioeconomic status and cardiometabolic risk: the HCHS/SOL Sociocultural Ancillary Study. Ann Behav Med 51, 477488.CrossRefGoogle Scholar
Cutler, DM & Lleras-Muney, A (2010) Understanding differences in health behaviors by education. J Health Econ 29, 128.CrossRefGoogle Scholar
Staiano, A, Harrington, D, Barreira, T et al. (2014) Sitting time and cardiometabolic risk in US adults: associations by sex, race, socioeconomic status and activity level. Br J Sports Med 48, 213219.CrossRefGoogle Scholar
Kipnis, V, Midthune, D, Freedman, L et al. (2002) Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr 5, 915923.CrossRefGoogle Scholar
Hebert, JR, Ma, Y, Clemow, L et al. (1997) Gender differences in social desirability and social approval bias in dietary self-report. Am J Epidemiol 146, 10461055.CrossRefGoogle Scholar
Novotny, JA, Rumpler, WV, Riddick, H et al. (2003) Personality characteristics as predictors of underreporting of energy intake on 24-hour dietary recall interviews. J Acad Nutr Diet 103, 11461151.Google Scholar
Hébert, JR, Peterson, KE, Hurley, TG et al. (2001) The effect of social desirability trait on self-reported dietary measures among multi-ethnic female health center employees. Ann Epidemiol 11, 417427.CrossRefGoogle Scholar
Bothwell, EK, Ayala, GX, Conway, TL et al. (2009) Underreporting of food intake among Mexican/Mexican-American women: rates and correlates. J Acad Nutr Diet 109, 624632.Google Scholar
US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory (2013) National Nutrient Database for Standard Reference, Release 24. https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/sr24-home-page/ (accessed January 2017).Google Scholar
Flores, M, Macias, N, Rivera, M et al. (2010) Dietary patterns in Mexican adults are associated with risk of being overweight or obese. J Nutr 140, 18691873.CrossRefGoogle Scholar
Bojorquez, I, Unikel, C, Cortez, I et al. (2015) The social distribution of dietary patterns. Traditional, modern and healthy eating among women in a Latin American city. Appetite 92, 4350.CrossRefGoogle Scholar
Ponce, X, Rodriguez-Ramirez, S, Mundo-Rosas, V et al. (2014) Dietary quality indices vary with sociodemographic variables and anthropometric status among Mexican adults: a cross-sectional study. Results from the 2006 National Health and Nutrition Survey. Public Health Nutr 17, 17171728.CrossRefGoogle Scholar
Moreno-Altamirano, L, Capraro, S, Panico, C et al. Estructura económica, distribución del ingreso, patrones de alimentación y las condiciones nutricionales en México (Economic structure, distribution of income, dietary patterns and nutritional conditions in Mexico). Economía UNAM 15, 2949.Google Scholar
Basto-Abreu, A, Barrientos-Gutierrez, T, Zepeda-Tello, R et al. (2018) The relationship of socioeconomic status with body mass index depends on the socioeconomic measure used. Obesity (Silver Spring) 26, 176184.CrossRefGoogle Scholar
Rojas-Martinez, R, Basto-Abreu, A, Aguilar-Salinas, CA et al. (2018) Prevalence of previously diagnosed diabetes mellitus in Mexico. Salud Publica Mex 60, 224232.Google Scholar
Popkin, BM (2002) The shift in stages of the nutrition transition in the developing world differs from past experiences! Public Health Nutr 5, 205214.CrossRefGoogle Scholar
Muldoon, MF, Erickson, KI, Goodpaster, BH et al. (2013) Concurrent physical activity modifies the association between n3 long-chain fatty acids and cardiometabolic risk in midlife adults. J Nutr 143, 14141420.CrossRefGoogle Scholar
Elliot, CA & Hamlin, MJ (2018) Combined diet and physical activity is better than diet or physical activity alone at improving health outcomes for patients in New Zealand’s primary care intervention. BMC Public Health 18, 230.CrossRefGoogle Scholar
Dodd, KW, Guenther, PM, Freedman, LS et al. (2006) Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J Am Diet Assoc 106, 16401650.CrossRefGoogle Scholar
Alberti, KG, Zimmet, P & Shaw, J (2006) Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23, 469480.CrossRefGoogle Scholar
Concato, J, Peduzzi, P, Holford, TR et al. (1995) Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. J Clin Epidemiol 48, 14951501.CrossRefGoogle Scholar
Peduzzi, P, Concato, J, Kemper, E et al. (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49, 13731379.CrossRefGoogle Scholar

López-Olmedo et al. supplementary material

Tables S1-S7

File 51 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 25
Total number of PDF views: 104 *
View data table for this chart

* Views captured on Cambridge Core between 08th July 2019 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-gtgjg Total loading time: 0.952 Render date: 2021-01-22T14:17:11.957Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cross-sectional association between diet quality and cardiometabolic risk by education level in Mexican adults
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Cross-sectional association between diet quality and cardiometabolic risk by education level in Mexican adults
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Cross-sectional association between diet quality and cardiometabolic risk by education level in Mexican adults
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *