Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54jdg Total loading time: 0.191 Render date: 2022-08-09T22:10:41.596Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Temporal window of integration of auditory information in the human brain

Published online by Cambridge University Press:  01 September 1998

HIROOKI YABE
Affiliation:
Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, Helsinki, Finland Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
MARI TERVANIEMI
Affiliation:
Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, Helsinki, Finland
JANNE SINKKONEN
Affiliation:
Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, Helsinki, Finland BioMag Laboratory, Medical Engineering Centre, Helsinki University Central Hospital, Helsinki, Finland
MINNA HUOTILAINEN
Affiliation:
Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, Helsinki, Finland
RISTO J. ILMONIEMI
Affiliation:
BioMag Laboratory, Medical Engineering Centre, Helsinki University Central Hospital, Helsinki, Finland
RISTO NÄÄTÄNEN
Affiliation:
Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, Helsinki, Finland
Get access

Abstract

A deviation in the acoustic environment activates an automatic change-detection system based on a memory mechanism that builds a neural trace representing the preceding sounds. The present study revealed that the auditory-cortex mechanisms underlying this sensory memory integrate acoustic events over time, producing a perception of a unitary auditory event. We recorded magnetic responses (MMNm) to occasional stimulus omissions in trains of stimuli presented at a constant stimulus-onset asynchrony (SOA) that was, in different blocks, either shorter or longer in duration than the assumed length of the temporal window of integration. A definite MMNm was elicited by stimulus omission only with the three shortest SOAs used: 100, 125, and 150 ms, but not with 175 ms. Thus, 160–170 ms was estimated as the length of the temporal window used by the central auditory system in integrating successive auditory input into auditory event percepts.

Type
BRIEF REPORT
Copyright
© 1998 Society for Psychophysiological Research

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Temporal window of integration of auditory information in the human brain
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Temporal window of integration of auditory information in the human brain
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Temporal window of integration of auditory information in the human brain
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *