Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.522 Render date: 2021-03-05T11:21:46.536Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

An investigation of the auditory streaming effect using event-related brain potentials

Published online by Cambridge University Press:  01 January 1999

ELYSE SUSSMAN
Affiliation:
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA Department of Psychology, City University of New York, USA
WALTER RITTER
Affiliation:
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
HERBERT G. VAUGHAN
Affiliation:
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
Get access

Abstract

There is uncertainty concerning the extent to which the auditory streaming effect is a function of attentive or preattentive mechanisms. The mismatch negativity (MMN), which indexes preattentive acoustic processing, was used to probe whether the segregation associated with the streaming effect occurs preattentively. In Experiment 1, alternating high and low tones were presented at fast and slow paces while subjects ignored the stimuli. At the slow pace, tones were heard as alternating high and low pitches, and no MMN was elicited. At the fast pace a streaming effect was induced and an MMN was observed for the low stream, indicating a preattentive locus for the streaming effect. The high deviant did not elicit an MMN. MMNs were obtained to both the high and low deviants when the interval between the across-stream deviance was lengthened to more than 250 ms in Experiment 2, indicating that the MMN system is susceptible to processing constraints.

Type
Research Article
Copyright
1999 Society for Psychophysiological Research

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 34 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An investigation of the auditory streaming effect using event-related brain potentials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An investigation of the auditory streaming effect using event-related brain potentials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An investigation of the auditory streaming effect using event-related brain potentials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *