Skip to main content Accessibility help
×
Home

Visual memory and sustained attention impairment in youths with autism spectrum disorders

  • Y.-L. Chien (a1) (a2), S. S.-F. Gau (a1) (a2) (a3), C.-Y. Shang (a1), Y.-N. Chiu (a1), W.-C. Tsai (a1) and Y.-Y Wu (a4)...

Abstract

Background

An uneven neurocognitive profile is a hallmark of autism spectrum disorder (ASD). Studies focusing on the visual memory performance in ASD have shown controversial results. We investigated visual memory and sustained attention in youths with ASD and typically developing (TD) youths.

Method

We recruited 143 pairs of youths with ASD (males 93.7%; mean age 13.1, s.d. 3.5 years) and age- and sex-matched TD youths. The ASD group consisted of 67 youths with autistic disorder (autism) and 76 with Asperger's disorder (AS) based on the DSM-IV criteria. They were assessed using the Cambridge Neuropsychological Test Automated Battery involving the visual memory [spatial recognition memory (SRM), delayed matching to sample (DMS), paired associates learning (PAL)] and sustained attention (rapid visual information processing; RVP).

Results

Youths with ASD performed significantly worse than TD youths on most of the tasks; the significance disappeared in the superior intelligence quotient (IQ) subgroup. The response latency on the tasks did not differ between the ASD and TD groups. Age had significant main effects on SRM, DMS, RVP and part of PAL tasks and had an interaction with diagnosis in DMS and RVP performance. There was no significant difference between autism and AS on visual tasks.

Conclusions

Our findings implied that youths with ASD had a wide range of visual memory and sustained attention impairment that was moderated by age and IQ, which supports temporal and frontal lobe dysfunction in ASD. The lack of difference between autism and AS implies that visual memory and sustained attention cannot distinguish these two ASD subtypes, which supports DSM-5 ASD criteria.

Copyright

Corresponding author

* Address for correspondence: S. S.-F. Gau, M.D., Ph.D., Department of Psychiatry, National Taiwan University Hospital and College of Medicine, no. 7, Chung-Shan South Road, Taipei 10002, Taiwan. (Email: gaushufe@ntu.edu.tw)

References

Hide All
Ameli, R, Courchesne, E, Lincoln, A, Kaufman, AS, Grillon, C (1988). Visual memory processes in high-functioning individuals with autism. Journal of Autism and Developmental Disorders 18, 601615.
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association: Arlington: VA.
Awh, E, Jonides, J (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences 5, 119126.
Awh, E, Jonides, J, Reuter-Lorenz, PA (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance 24, 780790.
Awh, E, Vogel, EK, Oh, SH (2006). Interactions between attention and working memory. Neuroscience 139, 201208.
Begley, S (2000). Getting inside a teen brain. Hormones aren't the only reason adolescents act crazy. Their gray matter differs from children's and adults’. Newsweek 135, 5859.
Blair, RJ, Frith, U, Smith, N, Abell, F, Cipolotti, L (2002). Fractionation of visual memory: agency detection and its impairment in autism. Neuropsychologia 40, 108118.
Bonilha, L, Cendes, F, Rorden, C, Eckert, M, Dalgalarrondo, P, Li, LM, Steiner, CE (2008). Gray and white matter imbalance – typical structural abnormality underlying classic autism? Brain Development 30, 396401.
Boucher, J, Lewis, V (1992). Unfamiliar face recognition in relatively able autistic children. Journal of Child Psychology and Psychiatry 33, 843859.
Boucher, J, Warrington, EK (1976). Memory deficits in early infantile autism: some similarities to the amnesic syndrome. British Journal of Psychology 67, 7387.
Castelli, F, Frith, C, Happe, F, Frith, U (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125, 18391849.
Chien, YL, Gau, SS, Chiu, YN, Tsai, WC, Shang, CY, Wu, YY (2014). Impaired sustained attention, focused attention, and vigilance in youths with autistic disorder and Asperger's disorder. Research in Autism Spectrum Disorders 8, 881889.
Chun, MM (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia 49, 14071409.
Cowan, N (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences 24, 87114; discussion 114–185.
Cowan, N, Alloway, T (1997). Development of working memory. In The Development of Memory in Childhood (ed. Cowan, N.), pp. 314329. Psychology Press: Hove, UK.
Cowan, N, Elliott, EM, Scott Saults, J, Morey, CC, Mattox, S, Hismjatullina, A, Conway, AR (2005). On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology 51, 42100.
Cusack, R, Lehmann, M, Veldsman, M, Mitchell, DJ (2009). Encoding strategy and not visual working memory capacity correlates with intelligence. Psychonomic Bulletin and Review 16, 641647.
Demidenko, E (2004). Mixed Models: Theory and Applications. John Wiley: New York.
Egerhazi, A, Berecz, R, Bartok, E, Degrell, I (2007). Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer's disease. Progress in Neuropsychopharmacology and Biological Psychiatry 31, 746751.
Gau, S-F, Soong, W-T (1999). Psychiatric comorbidity of adolescents with sleep terrors or sleepwalking: a case–control study. Australian and New Zealand Journal of Psychiatry 33, 734739.
Gau, SSF, Chong, MY, Chen, THH, Cheng, ATA (2005). A 3-year panel study of mental disorders among adolescents in Taiwan. American Journal of Psychiatry 162, 13441350.
Gau, SS, Liu, LT, Wu, YY, Chiu, YN, Tsai, WC (2013). Psychometric properties of the Chinese version of the social responsiveness scale. Research in Autism Spectrum Disorders 7, 349360.
Gau, SS-F, Huang, W-L (2014). Rapid visual information processing as a cognitive endophenotype of attention deficit hyperactivity disorder. Psychological Medicine 44, 435446.
Gau, SS-F, Lee, C-M, Lai, M-C, Chiu, Y-N, Huang, Y-F, Kao, J-D, Wu, Y-Y (2011). Psychometric properties of the Chinese version of the Social Communication Questionnaire. Research in Autism Spectrum Disorders 5, 809818.
Giedd, JN (2008). The teen brain: insights from neuroimaging. Journal of Adolescent Health 42, 335343.
Hua, X, Thompson, PM, Leow, AD, Madsen, SK, Caplan, R, Alger, JR, O'Neill, J, Joshi, K, Smalley, SL, Toga, AW, Levitt, JG (2013). Brain growth rate abnormalities visualized in adolescents with autism. Human Brain Mapping 34, 425436.
Kail, RV, Ferrer, E (2007). Processing speed in childhood and adolescence: longitudinal models for examining developmental change. Child Development 78, 17601770.
Ke, X, Hong, S, Tang, T, Zou, B, Li, H, Hang, Y, Zhou, Z, Ruan, Z, Lu, Z, Tao, G, Liu, Y (2008). Voxel-based morphometry study on brain structure in children with high-functioning autism. Neuroreport 19, 921925.
Lin, YJ, Chen, WJ, Gau, SS (2013). Neuropsychological functions among adolescents with persistent, subsyndromal and remitted attention deficit hyperactivity disorder. Psychological Medicine 27, 113.
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2006). SAS for Mixed Models, 2nd edn. SAS Institute Inc.: Cary, NC.
Lord, C, Rutter, M, Le Couteur, A (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders 24, 659685.
Luna, B, Minshew, NJ, Garver, KE, Lazar, NA, Thulborn, KR, Eddy, WF, Sweeney, JA (2002). Neocortical system abnormalities in autism: an fMRI study of spatial working memory. Neurology 59, 834840.
Lundervold, AJ, Stickert, M, Hysing, M, Sørensen, L, Gillberg, C, Posserud, MB (2012). Attention deficits in children with combined autism and ADHD: a CPT study. Journal of Attention Disorders. Published online 31 August 2012. doi:10.1177/1087054712453168.
Mammarella, IC, Giofre, D, Caviola, S, Cornoldi, C, Hamilton, C (2014). Visuospatial working memory in children with autism: the effect of a semantic global organization. Research in Developmental Disabilities 35, 13491356.
Miller, JN, Ozonoff, S (2000). The external validity of Asperger disorder: lack of evidence from the domain of neuropsychology. Journal of Abnormal Psychology 109, 227238.
Minshew, NJ, Goldstein, G (2001). The pattern of intact and impaired memory functions in autism. Journal of Child Psychology and Psychiatry 42, 10951101.
Miyake, A, Friedman, NP, Rettinger, DA, Shah, P, Hegarty, M (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General 130, 621640.
Moscovitch, M (1994). Cognitive resources and dual-task interference effects at retrieval in normal people: The role of the frontal lobes and medial temporal cortex. Neuropsychology 8, 524534.
O'Hearn, K, Tanaka, J, Lynn, A, Fedor, J, Minshew, N, Luna, B (2014). Developmental plateau in visual object processing from adolescence to adulthood in autism. Brain and Cognition 90, 124134.
Ozonoff, S, South, M, Miller, JN (2000). DSM-IV-defined Asperger syndrome: cognitive, behavioral and early history differentiation from high-functioning autism. Autism 4, 2946.
Palmer, S (2000). Working memory: a developmental study of phonological recoding. Memory 8, 179193.
Pickering, SJ (2001). The development of visuo-spatial working memory. Memory 9, 423432.
Prior, MR, Chen, CS (1976). Short-term and serial memory in autistic, retarded, and normal children. Journal of Autism and Childhood Schizophrenia 6, 121131.
Robbins, TW, James, M, Owen, AM, Sahakian, BJ, Lawrence, AD, McInnes, L, Rabbitt, PM (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society 4, 474490.
Robbins, TW, James, M, Owen, AM, Sahakian, BJ, McInnes, L, Rabbitt, P (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia 5, 266281.
Rojas, DC, Peterson, E, Winterrowd, E, Reite, ML, Rogers, SJ, Tregellas, JR (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 6, 56.
Sahakian, B, Jones, G, Levy, R, Gray, J, Warburton, D (1989). The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. British Journal of Psychiatry 154, 797800.
Sahakian, BJ, Morris, RG, Evenden, JL, Heald, A, Levy, R, Philpot, M, Robbins, TW (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain 111, 695718.
Sahgal, A (1987). Some limitations of indices derived from signal detection theory: evaluation of an alternative index for measuring bias in memory tasks. Psychopharmacology (Berlin) 91, 517520.
Sahyoun, CP, Soulieres, I, Belliveau, JW, Mottron, L, Mody, M (2009). Cognitive differences in pictorial reasoning between high-functioning autism and Asperger's syndrome. Journal of Autism and Developmental Disorders 39, 10141023.
Salmanian, M, Tehrani-Doost, M, Ghanbari-Motlagh, M, Shahrivar, Z (2012). Visual memory of meaningless shapes in children and adolescents with autism spectrum disorders. Iran Journal of Psychiatry 7, 104108.
Scherf, KS, Luna, B, Kimchi, R, Minshew, N, Behrmann, M (2008). Missing the big picture: impaired development of global shape processing in autism. Autism Research 1, 114129.
Shang, CY, Gau, SS (2011). Visual memory as a potential cognitive endophenotype of attention deficit hyperactivity disorder. Psychological Medicine 41, 26032614.
Smyth, MM, Scholey, KA (1994). Interference in immediate spatial memory. Memory and Cognition 22, 113.
Squeglia, LM, Jacobus, J, Sorg, SF, Jernigan, TL, Tapert, SF (2013). Early adolescent cortical thinning is related to better neuropsychological performance. Journal of International Neuropsychological Society 19, 962970.
Stanislaw, H, Todorov, N (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, and Computers 31, 137149.
Steele, SD, Minshew, NJ, Luna, B, Sweeney, JA (2007). Spatial working memory deficits in autism. Journal of Autism and Developmental Disorders 37, 605612.
Tanner, WP Jr, Swets, JA (1954). A decision-making theory of visual detection. Psychological Review 61, 401409.
Wesnes, K, Warburton, DM (1984). Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology 82, 147150.

Keywords

Type Description Title
WORD
Supplementary materials

Chien supplementary material
Supplementary Tables S1-S5

 Word (161 KB)
161 KB

Visual memory and sustained attention impairment in youths with autism spectrum disorders

  • Y.-L. Chien (a1) (a2), S. S.-F. Gau (a1) (a2) (a3), C.-Y. Shang (a1), Y.-N. Chiu (a1), W.-C. Tsai (a1) and Y.-Y Wu (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed