Skip to main content Accessibility help
×
Home

Veterans with post-traumatic stress disorder exhibit altered emotional processing and attentional control during an emotional Stroop task

  • M. M. Khanna (a1), A. S. Badura-Brack (a1), T. J. McDermott (a1) (a2) (a3), C. M. Embury (a2) (a3), A. I. Wiesman (a2) (a3), A. Shepherd (a1) (a4), T. J. Ryan (a1) (a5), E. Heinrichs-Graham (a2) (a3) and T. W. Wilson (a2) (a3)...

Abstract

Background

Post-traumatic stress disorder (PTSD) is often associated with attention allocation and emotional regulation difficulties, but the brain dynamics underlying these deficits are unknown. The emotional Stroop task (EST) is an ideal means to monitor these difficulties, because participants are asked to attend to non-emotional aspects of the stimuli. In this study, we used magnetoencephalography (MEG) and the EST to monitor attention allocation and emotional regulation during the processing of emotionally charged stimuli in combat veterans with and without PTSD.

Method

A total of 31 veterans with PTSD and 20 without PTSD performed the EST during MEG. Three categories of stimuli were used, including combat-related, generally threatening and neutral words. MEG data were imaged in the time-frequency domain and the network dynamics were probed for differences in processing threatening and non-threatening words.

Results

Behaviorally, veterans with PTSD were significantly slower in responding to combat-related relative to neutral and generally threatening words. Veterans without PTSD exhibited no significant differences in responding to the three different word types. Neurophysiologically, we found a significant three-way interaction between group, word type and time period across multiple brain regions. Follow-up testing indicated stronger theta-frequency (4–8 Hz) responses in the right ventral prefrontal (0.4–0.8 s) and superior temporal cortices (0.6–0.8 s) of veterans without PTSD compared with those with PTSD during the processing of combat-related words.

Conclusions

Our data indicated that veterans with PTSD exhibited deficits in attention allocation and emotional regulation when processing trauma cues, while those without PTSD were able to regulate emotion by directing attention away from threat.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Veterans with post-traumatic stress disorder exhibit altered emotional processing and attentional control during an emotional Stroop task
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Veterans with post-traumatic stress disorder exhibit altered emotional processing and attentional control during an emotional Stroop task
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Veterans with post-traumatic stress disorder exhibit altered emotional processing and attentional control during an emotional Stroop task
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

* Address for correspondence: M. M. Khanna, Ph.D., Department of Psychology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA. (Email: mayakhanna@creighton.edu)

Footnotes

Hide All

Previous presentations: Portions of this work were presented at the Association for Psychological Science (APS) meeting in San Francisco, CA on 22–25 May 2014 and at the Nebraska Neuroscience Symposium in Omaha, NE on 24 September 2014.

Footnotes

References

Hide All
Anders, SL, Peterson, CK, James, LM, Engdahl, B, Leuthold, AC, Georgopoulos, AP (2015). Neural communication in posttraumatic growth. Experimental Brain Research 233, 20132020.
Aupperle, RL, Melrose, AJ, Stein, MB, Paulus, MP (2012). Executive function and PTSD: disengaging from trauma. Neuropharmacology 62, 686694.
Badura-Brack, AS, Naim, R, Ryan, TJ, Levy, O, Abend, R, Khanna, MM, McDermott, TJ, Pine, DS, Bar-Haim, Y (2015). Effect of attention training on attention bias variability and PTSD symptoms: randomized controlled trials in Israeli and U.S. combat veterans. American Journal of Psychiatry 172, 12331241.
Balota, DA, Yap, MJ, Cortese, MJ, Hutchison, KA, Kessler, B, Loftis, B, Neely, JH, Nelson, DL, Simpson, GB, Treiman, R (2007). The English Lexicon Project. Behavior Research Methods 39, 445459.
Bar-Haim, Y (2010). Research review: attention bias modification (ABM): a novel treatment for anxiety disorders. Journal of Child Psychology and Psychiatry 51, 859870.
Becker, ES, Rinck, M, Margraf, J, Roth, WT (2001). The emotional Stroop effect in anxiety disorders – general emotionality or disorder specificity? Journal of Anxiety Disorders 15, 147159.
Blair, KS, Smith, BW, Mitchell, DGV, Morton, J, Vythilingam, M, Pessoa, L, Fridberg, D, Zametkin, A, Nelson, EE, Drevets, WC, Pine, DS, Martin, A, Blair, RJR (2007). Modulation of emotion by cognition and cognition by emotion. NeuroImage 35, 430440.
Blair, KS, Vythilingam, M, Crowe, SL, McCaffrey, DE, Ng, P, Wu, CC, Scaramozza, M, Mondillo, K, Pine, DS, Charney, DS, Blair, RJR (2013). Cognitive control of attention is differentially affected in trauma-exposed individuals with and without post-traumatic stress disorder. Psychological Medicine 43, 8595.
Blake, DD, Weathers, FW, Nagy, LM, Kaloupek, DG, Gusman, FD, Charney, DS, Keane, TM (1995). The development of a clinician-administered PTSD scale. Journal of Traumatic Stress 8, 7590.
Buhle, JT, Silvers, JA, Wager, TD, Lopez, R, Onyemekwu, C, Kober, H, Weber, J, Ochsner, KN (2014). Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cerebral Cortex 24, 29812990.
Cisler, JM, Wolitzky-Taylor, KB, Adams, TG Jr, Babson, KA, Badour, CL, Willems, JL (2011). The emotional Stroop task and posttraumatic stress disorder: a meta-analysis. Clinical Psychology Review 31, 817828.
Compton, RJ, Banich, MT, Mohanty, A, Milham, MP, Herrington, J, Miller, GA, Scalf, PE, Webb, A, Heller, W (2003). Paying attention to emotion: an fMRI investigation of cognitive and emotional Stroop tasks. Cognitive Affective and Behavioral Neuroscience, 3, 8196.
Desimone, R, Duncan, J (1995). Neural mechanisms of selective visual-attention. Annual Review of Neuroscience 18, 193222.
Dresler, T, Attar, CH, Spitzer, C, Lowe, B, Deckert, J, Buchel, C, Ehlis, AC, Fallgatter, AJ (2012). Neural correlates of the emotional Stroop task in panic disorder patients: an event-related fMRI study. Journal of Psychiatry Research 46, 16271634.
Engdahl, B, Leuthold, AC, Tan, H-RM, Lewis, SM, Winskowski, AM, Dikel, TN, Georgopoulos, AP (2010). Post-traumatic stress disorder: a right temporal lobe syndrome? Journal of Neural Engineering 7, 066005.
Ernst, MD (2004). Permutation methods: a basis for exact inference. Statistical Science 19, 676685.
Estes, Z, Adelman, JS (2008). Automatic vigilance for negative words is categorical and general. Emotion 8, 453457.
Georgopoulos, AP, Tan, HRM, Lewis, SM, Leuthold, AC, Winskowski, AM, Lynch, JK, Engdahl, B (2010). The synchronous neural interactions test as a functional neuromarker for post-traumatic stress disorder (PTSD): a robust classification method based on the bootstrap. Journal of Neural Engineering 7, 16011.
Gross, J, Kujala, J, Hamalainen, M, Timmermann, L, Schnitzler, A, Salmelin, R (2001). Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proceedings of the National Academy of Sciences USA 98, 694699.
Hariri, AR, Mattay, VS, Tessitore, A, Fera, F, Weinberger, DR (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry 53, 494501.
Heatherton, TF, Wagner, DD (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences 15, 132139.
Heinrichs-Graham, E, Wilson, TW (2015). Spatiotemporal oscillatory dynamics during the encoding and maintenance phases of a visual working memory task. Cortex 69, 121130.
Hillebrand, A, Singh, KD, Holliday, IE, Furlong, PL, Barnes, GR (2005). A new approach to neuroimaging with magnetoencephalography. Human Brain Mapping 25, 199211.
Hwang, S, White, SF, Nolan, ZT, Sinclair, S, Blair, RJR (2014). Neurodevelopmental changes in the responsiveness of systems involved in top down attention and emotional responding. Neuropsychologia 62, 277285.
James, LM, Engdahl, BE, Leuthold, AC, Lewis, SM, Van Kampen, E, Georgopoulos, AP (2013). Neural network modulation by trauma as a marker of resilience: differences between veterans with posttraumatic stress disorder and resilient controls. JAMA Psychiatry 70, 410418.
James, LM, Belitskaya-Lévy, I, Lu, Y, Wang, H, Engdahl, BE, Leuthold, AC, Georgopoulos, AP (2015). Development and application of a diagnostic algorithm for posttraumatic stress disorder. Psychiatry Research 231, 17.
Kastner, S, Ungerleider, LG (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience 23, 315341.
Khanna, MM, Badura-Brack, AS, McDermott, TJ, Shepherd, A, Heinrichs-Graham, E, Pine, DS, Bar-Haim, Y, Wilson, TW (2016). Attention training normalizes combat-related post-traumatic stress disorder effects on emotional Stroop performance using lexically matched word lists. Cognition and Emotion 30, 15211528.
Kober, H, Barrett, LF, Joseph, J, Bliss-Moreau, E, Lindquist, K, Wager, TD (2008). Functional grouping and cortical–subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage 42, 9981031.
Kuckertz, JM, Amir, N, Boffa, JW, Warren, CK, Rindt, SEM, Norman, S, Ram, V, Ziajko, L, Webb-Murphy, J, McLay, R (2014). The effectiveness of an attention bias modification program as an adjunctive treatment for post-traumatic stress disorder. Behaviour Research and Therapy 63, 2535.
LaBar, KS, Cabeza, R (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience 7, 5464.
Larsen, RJ, Mercer, KA, Balota, DA (2006). Lexical characteristics of words used in emotional Stroop experiments. Emotion 6, 6272.
Leskin, LP, White, PM (2007). Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology 21, 275284.
Lund, K, Burgess, C (1996). Hyperspace analogue to language (HAL): a general model semantic representation. Brain and Cognition 30, 55.
Luo, Q, Holroyd, T, Majestic, C, Cheng, X, Schechter, J, Blair, RJ (2010). Emotional automaticity is a matter of timing. Journal of Neuroscience 30, 58255829.
Maris, E, Oostenveld, R (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods 164, 177190.
McDermott, TJ, Badura-Brack, AS, Becker, KM, Ryan, TJ, Bar-Haim, Y, Pine, DS, Khanna, MM, Heinrichs-Graham, E, Wilson, TW (2016 a). Male veterans with PTSD exhibit aberrant neural dynamics during working memory encoding. Journal of Psychiatry and Neuroscience 164, 251260.
McDermott, TJ, Badura-Brack, AS, Becker, KM, Ryan, TJ, Bar-Haim, Y, Pine, DS, Khanna, MM, Heinrichs-Graham, E, Wilson, TW (2016 b). Attention training improves aberrant neural dynamics during working memory processing in veterans with PTSD. Cognitive, Affective, and Behavioral Neuroscience 16, 11401149.
McNally, RJ (1998). Experimental approaches to cognitive abnormality in posttraumatic stress disorder. Clinical Psychology Review 18, 971982.
Metzger, LJ, Orr, SP, Lasko, NB, McNally, RJ, Pitman, RK (1997). Seeking the source of emotional Stroop interference effects in PTSD: a study of P3s to traumatic words. Integrative Physiological and Behavioral Science 32, 4351.
Mitchell, DGV, Nakic, M, Fridberg, D, Kamel, N, Pine, DS, Blair, RJR (2007). The impact of processing load on emotion. NeuroImage 34, 12991309.
Mitterschiffthaler, MT, Williams, SCR, Walsh, ND, Cleare, AJ, Donaldson, C, Scott, J, Fu, CHY (2008). Neural basis of the emotional Stroop interference effect in major depression. Psychological Medicine 38, 247256.
New, AS, Fan, J, Murrough, JW, Liu, X, Liebman, RE, Guise, KG, Tang, CY, Charney, DS (2009). A functional magnetic resonance imaging study of deliberate emotion regulation in resilience and posttraumatic stress disorder. Biological Psychiatry 66, 656664.
Ochsner, KN, Gross, J (2005). The cognitive control of emotion. Trends in Cognitive Sciences 9, 242249.
Ovaysikia, S, Tahir, KA, Chan, JL, DeSouza, JFX (2011). Word wins over face: emotional Stroop effect activates the frontal cortical network. Frontiers in Human Neuroscience 4, 234.
Pannu Hayes, J, Labar, KS, Petty, CM, McCarthy, G, Morey, RA (2009). Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatry Research 172, 715.
Phaf, RH, Kan, KJ (2007). The automaticity of emotional Stroop: a meta-analysis. Journal of Behavior Therapy and Experimental Psychiatry 38, 184199.
Rauch, SL, Shin, LM, Phelps, EA (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biological Psychiatry 60, 376382.
Riemann, BC, McNally, RJ (1995). Cognitive processing of personally relevant information. Cognition and Emotion 9, 325340.
Schoorl, M, Putman, P, Van der Does, W (2013). Attentional bias modification in posttraumatic stress disorder: a randomized controlled trial. Psychotherapy and Psychosomatics 82, 99105.
Schoorl, M, Putman, P, Van Der Werff, S, Van Der Does, AJW (2014). Attentional bias and attentional control in Posttraumatic Stress Disorder. Journal of Anxiety Disorders 28, 203210.
Sheehan, DV, Lecrubier, Y, Sheehan, KH, Amorim, P, Janavs, J, Weiller, E, Hergueta, T, Baker, R, Dunbar, GC (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59 (Suppl. 20), 2233.
Stroop, JR (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18, 643662.
Taulu, S, Simola, J (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine and Biology 51, 17591768.
Thomas, SJ, Gonsalvez, CJ, Johnstone, SJ (2013). Neural time course of threat-related attentional bias and interference in panic and obsessive–compulsive disorders. Biological Psychology 94, 116129.
Todd, RM, MacDonald, MJ, Sedge, P, Robertson, A, Jetly, R, Taylor, MJ, Pang, EW (2015). Soldiers with posttraumatic stress disorder see a world full of threat: magnetoencephalography reveals enhanced tuning to combat-related cues. Biological Psychiatry 78, 821829.
Uusitalo, MA, Ilmoniemi, RJ (1997). Signal-space projection method for separating MEG or EEG into components. Medical Biological Engineering and Computing 35, 135140.
Veit, R, Singh, V, Sitaram, R, Caria, A, Rauss, K, Birbaumer, N (2012). Using real-time fMRI to learn voluntary regulation of the anterior insula in the presence of threat-related stimuli. Social Cognitive and Affective Neuroscience 7, 623634.
Weathers, FW, Ruscio, AM, Keane, TM (1999). Psychometric properties of nine scoring rules for the Clinician-Administered Posttraumatic Stress Disorder Scale. Psychological Assessment 11, 124133.
White, SF, Costanzo, ME, Blair, JR, Roy, MJ (2015). PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample. NeuroImage: Clinical 7, 1927.
Williams, JMG, Mathews, A, MacLeod, C (1996). The emotional Stroop task and psychopathology. Psychological Bulletin 120, 324.
Wilson, TW, Heinrichs-Graham, E, Becker, KM (2014). Circadian modulation of motor-related beta oscillatory responses. NeuroImage 102, 531539.
Wilson, TW, Heinrichs-Graham, E, Becker, KM, Aloi, J, Robertson, KR, Sandkovsky, U, White, ML, O'Neill, J, Knott, NL, Fox, HS, Swindells, S (2015). Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults. Human Brain Mapping 36, 897910.
Wilson, TW, Heinrichs-Graham, E, Proskovec, AL, McDermott, TJ (2016). Neuroimaging with magnetoencephalography: a dynamic view of brain pathophysiology. Translational Research 175, 1736.

Keywords

Veterans with post-traumatic stress disorder exhibit altered emotional processing and attentional control during an emotional Stroop task

  • M. M. Khanna (a1), A. S. Badura-Brack (a1), T. J. McDermott (a1) (a2) (a3), C. M. Embury (a2) (a3), A. I. Wiesman (a2) (a3), A. Shepherd (a1) (a4), T. J. Ryan (a1) (a5), E. Heinrichs-Graham (a2) (a3) and T. W. Wilson (a2) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed