Skip to main content Accessibility help

Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates

  • E. I. Fried (a1), S. von Stockert (a2), J. M. B. Haslbeck (a2), F. Lamers (a3), R. A. Schoevers (a4) and B. W. J. H. Penninx (a5)...



Studies investigating the link between depressive symptoms and inflammation have yielded inconsistent results, which may be due to two factors. First, studies differed regarding the specific inflammatory markers studied and covariates accounted for. Second, specific depressive symptoms may be differentially related to inflammation. We address both challenges using network psychometrics.


We estimated seven regularized Mixed Graphical Models in the Netherlands Study of Depression and Anxiety (NESDA) data (N = 2321) to explore shared variances among (1) depression severity, modeled via depression sum-score, nine DSM-5 symptoms, or 28 individual depressive symptoms; (2) inflammatory markers C-reactive protein (CRP), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α); (3) before and after adjusting for sex, age, body mass index (BMI), exercise, smoking, alcohol, and chronic diseases.


The depression sum-score was related to both IL-6 and CRP before, and only to IL-6 after covariate adjustment. When modeling the DSM-5 symptoms and CRP in a conceptual replication of Jokela et al., CRP was associated with ‘sleep problems’, ‘energy level’, and ‘weight/appetite changes’; only the first two links survived covariate adjustment. In a conservative model with all 38 variables, symptoms and markers were unrelated. Following recent psychometric work, we re-estimated the full model without regularization: the depressive symptoms ‘insomnia’, ‘hypersomnia’, and ‘aches and pain’ showed unique positive relations to all inflammatory markers.


We found evidence for differential relations between markers, depressive symptoms, and covariates. Associations between symptoms and markers were attenuated after covariate adjustment; BMI and sex consistently showed strong relations with inflammatory markers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: E. I. Fried, E-mail:


Hide All
Berk, M, Williams, L, Jacka, F, O'Neil, A, Pasco, J, Moylan, S, Allen, N, Stuart, A, Hayley, A, Byrne, M and Maes, M (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Medicine 11, 116.
Bockting, CL, Hollon, SD, Jarrett, RB, Kuyken, W and Dobson, K (2015) A lifetime approach to major depressive disorder: the contributions of psychological interventions in preventing relapse and recurrence. Clinical Psychology Review 41, 1626.
Choi, J, Joseph, L and Pilote, L (2013) Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obesity Reviews 14, 232244.
Chu, AL, Stochl, J, Lewis, G, Zammit, S, Jones, PB and Khandaker, GM (2019) Longitudinal association between inflammatory markers and specific symptoms of depression in a prospective birth cohort. Brain, Behavior, and Immunity 76, 7481.
Craig, CL, Marshall, AL, Sjöström, M, Bauman, AE, Booth, ML, Ainsworth, BE, Pratt, M, Ekelund, U, Yngve, A, Sallis, JF and Oja, P (2003) International Physical Activity Questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise 35, 13811395.
Dantzer, R, O'Connor, JC, Freund, GG, Johnson, RW and Kelley, KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nature reviews. Neuroscience 9, 4656.
de Heredia, FP, Gómez-Martínez, S and Marcos, A (2012) Obesity, inflammation and the immune system. Proceedings of the Nutrition Society 71, 332338.
Del Giudice, M and Gangestad, SW (2018) Rethinking IL-6 and CRP: why they are more than inflammatory biomarkers, and why it matters. Brain, Behavior, and Immunity 70, 6175.
Duivis, HE, Vogelzangs, N, Kupper, N, de Jonge, P and Penninx, BWJH (2013) Differential association of somatic and cognitive symptoms of depression and anxiety with inflammation: findings from the Netherlands Study of Depression and Anxiety (NESDA). Psychoneuroendocrinology 38, 15731585.
Dunn, BD (2012) Helping depressed clients reconnect to positive emotion experience: current insights and future directions. Clinical Psychology & Psychotherapy 19, 326340.
Elovainio, M, Aalto, A-M, Kivimäki, M, Pirkola, S, Sundvall, J, Lönnqvist, J and Reunanen, A (2009) Depression and C-reactive protein: population-based health 2000 study. Psychosomatic Medicine 71, 423430.
Epskamp, S and Fried, EI (2018) A tutorial on regularized partial correlation networks a tutorial on regularized partial correlation networks. Psychological Methods 23, 617634.
Epskamp, S, Cramer, AOJ, Waldrop, LJ, Schmittmann, VD and Borsboom, D (2012) Qgraph. Network Visualizations of Relationships in Psychometric Data 48, 118.
Epskamp, S, Borsboom, D and Fried, EI (2017) Estimating psychological networks and their accuracy: a tutorial paper. Behavior Research Methods 50, 195212.
Foygel, R and Drton, M (2010) Extended Bayesian information criteria for Gaussian graphical models. In Advances in Neural Information Processing Systems 23, pp. 604612. Available at
Fried, EI (2017) The 52 symptoms of major depression: lack of content overlap among seven common depression scales. Journal of Affective Disorders 208, 191197.
Fried, EI and Nesse, RM (2014) The impact of individual depressive symptoms on impairment of psychosocial functioning. PLoS ONE 9, e90311.
Fried, EI and Nesse, RM (2015) Depression sum-scores don't add up: why analyzing specific depression symptoms is essential. BMC Medicine 13, 111.
Fried, EI and Cramer, AOJ (2017) Moving forward: challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science 12, 9991020.
Fried, EI, Nesse, RM, Zivin, K, Guille, C and Sen, S (2014) Depression is more than the sum score of its parts: individual DSM symptoms have different risk factors. Psychological Medicine 44, 20672076.
Guloksuz, S, Pries, L-K and Van Os, J (2017) Application of network methods for understanding mental disorders: pitfalls and promise. Psychological Medicine 47, 27432752.
Haapakoski, R, Mathieu, J, Ebmeier, KP, Alenius, H and Kivimäki, M (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity 49, 206215.
Haroon, E, Raison, CL and Miller, AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37, 137162.
Haslbeck, J and Fried, EI (2018) How predictable are symptoms in psychopathological networks? A reanalysis of 17 published datasets. Psychological Medicine 47, 27672776.
Haslbeck, J and Waldorp, L (2018) How well do network models predict future observations? On the importance of predictability in network models. Behavior Research Methods 50, 853861.
Haslbeck, J and Waldorp, LJ (2019) MGM: estimating time-varying mixed graphical models in high-dimensional data. Arxiv Preprint. Available at
Hayashino, Y, Jackson, JL, Hirata, T, Fukumori, N, Nakamura, F, Fukuhara, S, Tsujii, S and Ishii, H (2014) Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metabolism 63, 431440.
Hieronymus, F, Emilsson, JF, Nilsson, S and Eriksson, E (2016) Consistent superiority of selective serotonin reuptake inhibitors over placebo in reducing depressed mood in patients with major depression. Molecular Psychiatry 21, 523530.
Hiles, SA, Baker, AL, de Malmanche, T and Attia, J (2012) A meta-analysis of differences in IL-6 and IL-10 between people with and without depression: exploring the causes of heterogeneity. Brain, Behavior, and Immunity 26, 11801188.
Horn, SR, Long, MM, Nelson, BW, Allen, NB, Fisher, PA and Byrne, ML (2018) Replication and reproducibility issues in the relationship between C-reactive protein and depression: a systematic review and focused meta-analysis. Brain, Behavior, and Immunity 73, 85114.
Jokela, M, Virtanen, M and Batty, GD (2016) Inflammation and specific symptoms of depression. JAMA Psychiatry 73, 16.
Keller, MC, Neale, MC and Kendler, K (2007) Association of different adverse life events with distinct patterns of depressive symptoms. The American Journal of Psychiatry 164, 15211529.
Kendler, KS (2016) The phenomenology of major depression and the representativeness and nature of DSM criteria. American Journal of Psychiatry 173, 771780.
Köhler, CA, Freitas, TH, Maes, M, de Andrade, NQ, Liu, CS, Fernandes, BS, Stubbs, B, Solmi, M, Veronese, N, Herrmann, N, Raison, CL, Miller, BJ, Lanctôt, KL and Carvalho, AF (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatrica Scandinavica 135, 373387.
Lamers, F, Bot, M, Jansen, R, Chan, M, Cooper, J, Bahn, S and Penninx, B (2016) Serum proteomic profiles of depressive subtypes. Translational Psychiatry 6, e851.
Lamers, F, Milaneschi, Y, de Jonge, P, Giltay, EJ and Penninx, BWJH (2018) Metabolic and inflammatory markers: associations with individual depressive symptoms. Psychological Medicine, 111.
Liu, H, Lafferty, J and Wasserman, L (2009) The nonparanormal: semiparametric estimation of high dimensional undirected graphs. The Journal of Machine Learning Research 10, 22952328.
Liu, Y, Al-Sayegh, H, Jabrah, R, Wang, W, Yan, F and Zhang, J (2014) Association between C-reactive protein and depression: modulated by gender and mediated by body weight. Psychiatry Research 219, 103108.
Milaneschi, Y, Simmons, WK, van Rossum, EFC and Penninx, BW (2018) Depression and obesity: evidence of shared biological mechanisms. Molecular Psychiatry 24, 1833.
Moriarity, DP, Mac Giollabhui, N, Ellman, LM, Klugman, J, Coe, CL, Abramson, LY and Alloy, LB (2019) Inflammatory proteins predict change in depressive symptoms in male and female adolescents. Clinical Psychological Science 7, 754767.
O'Connor, MF, Bower, JE, Cho, HJ, Creswell, JD, Dimitrov, S, Hamby, ME, Hoyt, MA, Martin, JL, Robles, TF, Sloan, EK, Thomas, KMS and Irwin, MR (2009) To assess, to control, to exclude: effects of biobehavioral factors on circulating inflammatory markers. Brain, Behavior, and Immunity 23, 887897.
Penninx, BWJH, Beekman, ATF, Smit, JH, Zitman, FG, Nolen, WA, Spinhoven, P, Cuijpers, P, De Jong, PJ, Van Marwijk, HWJ, Assendelft, WJJ, Van Der Meer, K, Verhaak, P, Wensing, M, De Graaf, R, Hoogendijk, WJ, Ormel, J and Van Dyck, R (2008) The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. International Journal of Methods in Psychiatric Research 17, 121140.
Rush, AJ, Gullion, CM, Basco, MR, Jarrett, RB and Trivedi, MH (1996) The Inventory of Depressive Symptomatology (IDS): psychometric properties. Psychological Medicine 26, 477486.
Santor, DA, Gregus, M and Welch, A (2006) Eight decades of measurement in depression. Measurement 4, 135155.
Saunders, JB, Aasland, OG, Babor, TF, de la Fuente, JR and Grant, M (1993) Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption–II. Addiction (Abingdon, England) 88, 791804.
Slyepchenko, A, Maes, M, Jacka, FN, Köhler, CA, Barichello, T, McIntyre, RS, Berk, M, Grande, I, Foster, JA, Vieta, E and Carvalho, AF (2017) Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychotherapy and Psychosomatics 86, 3146.
Smith, RS (1991) The macrophage theory of depression. Medical Hypotheses 35, 298306.
Smith, KJ, Au, B, Ollis, L and Schmitz, N (2018) The association between C-reactive protein, interleukin-6 and depression among older adults in the community: a systematic review and meta-analysis. Experimental Gerontology 102, 109132.
Stringaris, A, Vidal-Ribas Belil, P, Artiges, E, Lemaitre, H, Gollier-Briant, F, Wolke, S, Vulser, H, Miranda, R, Penttilä, J, Struve, M, Fadai, T, Kappel, V, Grimmer, Y, Goodman, R, Poustka, L, Conrod, P, Cattrell, A, Banaschewski, T, Bokde, AL, Bromberg, U, Büchel, C, Flor, H, Frouin, V, Gallinat, J, Garavan, H, Gowland, P, Heinz, A, Ittermann, B, Nees, F, Papadopoulos, D, Paus, T, Smolka, MN, Walter, H, Whelan, R, Martinot, JL, Schumann, G, Paillère-Martinot, ML and IMAGEN Consortium (2015) The brain s response to reward anticipation and depression in adolescence: dimensionality, specificity, and longitudinal predictions in a community-based sample. American Journal of Psychiatry 172, 12151223.
Tibshirani, R (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58, 267288.
Tweed, DL (1993) Depression-related impairment: estimating concurrent and lingering effects. Psychological Medicine 23, 373386.
Valkanova, V, Ebmeier, KP and Allan, CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. Journal of Affective Disorders 150, 736744.
Vogelzangs, N, Duivis, HE, Beekman, ATF, Kluft, C, Neuteboom, J, Hoogendijk, W, Smit, JH, de Jonge, P and Penninx, BWJH (2012) Association of depressive disorders, depression characteristics and antidepressant medication with inflammation. Translational Psychiatry 2, e79.
White, J, Kivimäki, M, Jokela, M and Batty, GD (2017) Association of inflammation with specific symptoms of depression in a general population of older people: the English Longitudinal Study of Ageing. Brain, Behavior, and Immunity 61, 2730.
Williams, D, Rhemtulla, M, Wysocki, AC and Rast, P (2019) On non-regularized estimation of psychological networks. Multivariate Behavioral Research 54, 719750.
You, T and Nicklas, BJ (2006) Chronic inflammation: role of adipose tissue and modulation by weight loss. Current Diabetes Reviews 2, 2937.
Zhou, X, Fragala, MS, McElhaney, JE and Kuchel, GA (2010) Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Current Opinion in Clinical Nutrition and Metabolic Care 13, 541547.


Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates

  • E. I. Fried (a1), S. von Stockert (a2), J. M. B. Haslbeck (a2), F. Lamers (a3), R. A. Schoevers (a4) and B. W. J. H. Penninx (a5)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed