Skip to main content Accessibility help

Polygenic risk for schizophrenia and season of birth within the UK Biobank cohort

  • Valentina Escott-Price (a1), Daniel J. Smith (a2), Kimberley Kendall (a1), Joey Ward (a2), George Kirov (a1), Michael J. Owen (a1), James Walters (a1) and Michael C. O'Donovan (a1)...



There is strong evidence that people born in winter and in spring have a small increased risk of schizophrenia. As this ‘season of birth’ effect underpins some of the most influential hypotheses concerning potentially modifiable risk exposures, it is important to exclude other possible explanations for the phenomenon.


Here we sought to determine whether the season of birth effect reflects gene-environment confounding rather than a pathogenic process indexing environmental exposure. We directly measured, in 136 538 participants from the UK Biobank (UKBB), the burdens of common schizophrenia risk alleles and of copy number variants known to increase the risk for the disorder, and tested whether these were correlated with a season of birth.


Neither genetic measure was associated with season or month of birth within the UKBB sample.


As our study was highly powered to detect small effects, we conclude that the season of birth effect in schizophrenia reflects a true pathogenic effect of environmental exposure.


Corresponding author

Author for correspondence: Valentina Escott-Price, E-mail:


Hide All
Adan, A, Arredondo, AY, Capella, MD, Prat, G, Forero, DA and Navarro, JF (2017) Neurobiological underpinnings and modulating factors in schizophrenia spectrum disorders with a comorbid substance use disorder: a systematic review. Neuroscience & Biobehavioral Reviews 75, 361377.
Baron, M and Gruen, R (1988) Risk factors in schizophrenia. Season of birth and family history. British Journal of Psychiatry, 152, 460465.
Boyd, JH, Pulver, AE and Stewart, W (1986) Season of birth: schizophrenia and bipolar disorder. Schizophrenia Bulletin 12(2), 173186.
Bradbury, TN and Miller, GA (1985) Season of birth in schizophrenia: a review of evidence, methodology, and etiology. Psychological Bulletin, 98(3), 569594.
Bulik-Sullivan, BK, Loh, PR, Finucane, HK, Ripke, S, Yang, J, Schizophrenia Working Group of the PGC, Patterson, N et al. (2015) LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics 47(3), 291295.
Byrne, EM, Psychiatric Genetics Consortium Major Depressive Disorder Working Group, Raheja, UK, Stephens, SH, Heath, AC, Madden, PA, Vaswani, D et al. (2015) Seasonality shows evidence for polygenic architecture and genetic correlation with schizophrenia and bipolar disorder. Journal of Clinical Psychiatry 76(2), 128134.
Cardno, AG and Gottesman, II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medical Genetics 97(1), 1217.
Coe, BP, Witherspoon, K, Rosenfeld, JA, van Bon, BW, Vulto-van Silfhout, AT, Bosco, P et al. (2014) Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics 46(10), 10631071.
Davies, G, Welham, J, Chant, D, Torrey, EF and McGrath, J (2003) A systematic review and meta-analysis of northern hemisphere season of birth studies in schizophrenia. Schizophrenia Bulletin 29(3), 587593.
Delaneau, O, Zagury, JF and Marchini, J (2013) Improved whole-chromosome phasing for disease and population genetic studies. Nature Methods 10(1), 56.
Devlin, B and Roeder, K (1999) Genomic control for association studies. Biometrics 55(4), 9971004.
Disanto, G, Morahan, JM, Lacey, MV, DeLuca, GC, Giovannoni, G, Ebers, GC et al. (2012) Seasonal distribution of psychiatric births in England. PLoS ONE 7(4), e34866.
Dittwald, P, Gambin, T, Szafranski, P, Li, J, Amato, S, Divon, MY et al. (2013) NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Research 23(9), 13951409.
Dudbridge, F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics 9(3), e1003348.
Ellman, LM, Huttunen, M, Lonnqvist, J and Cannon, TD (2007) The effects of genetic liability for schizophrenia and maternal smoking during pregnancy on obstetric complications. Schizophrenia Research 93(1–3), 229236.
Grootendorst-van Mil, NH, Steegers-Theunissen, RPM, Hofman, A, Jaddoe, VWV, Verhulst, FC and Tiemeier, H (2017) Brighter children? The association between seasonality of birth and child IQ in a population-based birth cohort. BMJ Open 7, e012406. doi:10.1136/bmjopen-2016-012406.
Hettema, JM, Walsh, D and Kendler, KS (1996) Testing the effect of season of birth on familial risk for schizophrenia and related disorders, British Journal of Psychiatry 168(2), 205209.
Howie, B, Fuchsberger, C, Stephens, M, Marchini, J and Abecasis, GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature Genetics 44(8), 955959.
International Schizophrenia Consortium, Purcell, SM, Wray, NR, Stone, JL, Visscher, PM, O'Donovan, MC, Sullivan, PF et al. (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256), 748752.
Jeronimus, BF, Stavrakakis, N, Veenstra, R and Oldehinkel, AJ (2015) Relative Age effects in Dutch adolescents: concurrent and prospective analyses. PLoS ONE 10(6), e0128856.
Kendall, KM, Rees, E, Escott-Price, V, Einon, M, Thomas, R, Hewitt, J et al. (2017) Cognitive performance Among carriers of pathogenic copy number variants: analysis of 152000 UK biobank subjects. Biological Psychiatry 82(2), 103110.
McGrath, J (1999) Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophrenia Research 40(3), 173177.
Mortensen, PB, Pedersen, CB, Westergaard, T, Wohlfahrt, J, Ewald, H, Mors, O et al. (1999) Effects of family history and place and season of birth on the risk of schizophrenia. New England Journal of Medicine 340(8), 603608.
Natale, V and Adan, A (1999) Season of birth modulates morningness-eveningness preference in humans. Neuroscience Letter 274(2), 139141.
Natale, V, Adan, A and Fabbri, M (2009) Season of birth, gender, and social-cultural effects on sleep timing preferences in humans. Sleep 32(3), 423426.
Pardiñas, AF, Holmans, P, Pocklington, AJ, Escott-Price, V, Ripke, S, Carrera, N, et al. (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection. Nature Genetics, (in press).
Power, RA, Verweij, KJ, Zuhair, M, Montgomery, GW, Henders, AK, Heath, AC et al. (2014) Genetic predisposition to schizophrenia associated with increased use of cannabis. Molecular Psychiatry 19(11), 12011204.
Purcell, SM, Moran, JL, Fromer, M, Ruderfer, D, Solovieff, N, Roussos, P et al. (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506(7487), 185190.
Rees, E, Walters, JT, Georgieva, L, Isles, AR, Chambert, KD, Richards, AL et al. (2014) Analysis of copy number variations at 15 schizophrenia-associated loci. British Journal of Psychiatry 204(2), 108114.
Ripke, S, O'Dushlaine, C, Chambert, K, Moran, JL, Kahler, AK, Akterin, S, et al. (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics 45(10), 11501159.
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510), 421427.
Singh, T, Kurki, MI, Curtis, D, Purcell, SM, Crooks, L, McRae, J et al. (2016) Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders, Nature Neuroscience 19(4), 571577.
Smith, DJ, Escott-Price, V, Davies, G, Bailey, ME, Colodro-Conde, L, Ward, J et al. (2016) Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. Molecular Psychiatry 21(6), 749757.
Sudlow, C, Gallacher, J, Allen, N, Beral, V, Burton, P, Danesh, J et al. (2015) UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine 12(3), e1001779.
Sullivan, PF, Kendler, KS and Neale, MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Archives of General Psychiatry 60(12), 11871192.
Suvisaari, JM, Haukka, JK and Lonnqvist, JK (2004) No association between season of birth of patients with schizophrenia and risk of schizophrenia among their siblings, Schizophrenia Research 66(1), 16.
Svensson, AC, Lichtenstein, P, Sandin, S, Oberg, S, Sullivan, PF and Hultman, CM (2012) Familial aggregation of schizophrenia: the moderating effect of age at onset, parental immigration, paternal age and season of birth. Scandinavial Journal Public Health 40(1), 4350.
Thapar, A, Rice, F, Hay, D, Boivin, J, Langley, K, van den Bree, M et al. (2009) Prenatal smoking might not cause attention-deficit/hyperactivity disorder: evidence from a novel design. Biological Psychiatry 66(8), 722727.
Torrey, EF, Torrey, BB and Peterson, MR (1977) Seasonality of schizophrenic births in the United States. Archives General Psychiatry 34(9), 10651070.
Vaucher, J, Keating, BJ, Lasserr, AM, Gan, W, Lyall, DM, Ward, J et al. (2017) Cannabis use and risk of schizophrenia: a Mendelian randomization study. Molecular Psychiatry doi: 10.1038/mp.2016.252.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Escott-Price et al. supplementary material
Table S1 and Figures S1-S2

 Word (106 KB)
106 KB

Polygenic risk for schizophrenia and season of birth within the UK Biobank cohort

  • Valentina Escott-Price (a1), Daniel J. Smith (a2), Kimberley Kendall (a1), Joey Ward (a2), George Kirov (a1), Michael J. Owen (a1), James Walters (a1) and Michael C. O'Donovan (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.