Skip to main content Accessibility help

Patterns of cortical activity in schizophrenia

  • J. Schroeder (a1), M. S. Buchsbaum (a1), B. V. Siegel (a1), F. J. Geider (a1), R. J. Haier (a1), J. Lohr (a1), J. Wu (a1) and S. G. Potkin (a1)...


Eighty-three patients with schizophrenia and 47 healthy controls received positron emission tomography (PET) with 18F-2-deoxyglucose uptake while they were executing the Continuous Performance Test (CPT). The entire cortex was divided into 16 regions of interest in each hemisphere, four in each lobe of the brain, and data from corresponding right and left hemispheric regions were averaged. Data from the schizophrenic patients were subjected to a factor analysis, which revealed five factors that explained 80% of the common variance. According to their content, the factors were identified and labelled ‘parietal cortex and motor strip’, ‘associative areas’, ‘temporal cortex’, ‘hypofrontality’ (which included midfrontal and occipital areas) and ‘frontal cortex’. Hemispheric asymmetry was only confirmed for the temporal cortex. Factor weights obtained in the schizophrenic group were applied to the metabolic data of the healthy controls and factor scales computed. Schizophrenics were significantly more hypofrontal than the controls, with higher values on the ‘parietal cortex and motor strip’ factor and a trend towards higher values in the temporal cortex. A canonical discriminant analysis confirmed that the ‘hypofrontality’ and ‘parietal cortex and motor strip’ factors accurately separated the schizophrenic group from the healthy controls. Hemispheric asymmetry was only confirmed for the temporal lobe. Significantly higher factor scores for the left temporal lobe in schizophrenics than in normals were obtained when calculated for the right and left hemisphere separately. Taken together, our results confirm the importance of hypofrontality as a pattern of cortical metabolic rate and point to the potential importance of parietal and motor strip function in schizophrenia.


Corresponding author

1Address for correspondence: Dr Monte S. Buchsbaum, Box 1505. Mt Sinai School of Medicine, Department of Psychiatry, 1 Gustave Levy Place, New York, NY 10029, USA


Hide All
Benson, D. F. & Stuss, D. T. (1986). The Frontal Lobes. Raven Press: New York.
Bernstein, I. H. (1988). Applied Multivariate Analysis. Springer-Verlag: New York.
Buchsbaum, M. S. (1990). The frontal lobes, basal ganglia and temporal lobes as sites for schizophrenia. Schizophrenia Bulletin 16, 379389.
Buchsbaum, M. S., Ingvar, D. H., Kessler, R., Waters, R. N., Cappelletti, J., van Kammen, D. P., King, A. C., Johnson, J. L., Manning, R. G., Flynn, R. W., Mann, L. S., Bunney, W. E. Jr. & Sokoloff, L. (1982). Cerebral glucography with positron emission tomography. Archives of General Psychiatry 39, 251259.
Buchsbaum, M. S., Holcomb, H. H., DeLisi, L. E., Cappelletti, J., King, A. C., Johnson, J., Hazlett, E., Post, R. M., Morihisa, J., Carpenter, W., Cohen, R., Pickar, D. & Kessler, R. (1984). Anteroposterior gradients in schizophrenia and affective disorders. Archives of General Psychiatry 41, 11591166.
Buchsbaum, M. S., Gillin, J. C., Wu, J., Hazlett, E., Sicotte, N. & DuPont, R. M. (1989). Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sciences 45, 13491356.
Buchsbaum, M. S., Nuechterlein, K. H., Haier, R. J., Wu, J., Sicotte, N., Hazlett, E., Asarnow, R., Potkin, S. & Guich, S. (1990). Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron tomography. British Journal of Psychiatry 156, 216227.
Buchsbaum, M. S., Haier, R. J., Potkin, S. G., Nuechterlein, K., Bracha, S., Katz, M., Lohr, J., Wu, J., Lottenberg, S., Jerabek, P. A., Trenary, M., Tafalla, R., Reynolds, C. & Bunney, W. E. (1992). Fronto-striatal disorder of cerebral metabolism in never-medicated schizophrenics. Archives of General Psychiatry 49, 935942.
Cornblatt, B. A., Risch, N. J., Faris, G., Friedman, D. & Erlenmeyer-Kimling, L. (1988). The Continuous Performance Test, Identical Pairs Version (CPT-IP): new findings about sustained attention in normal families. Psychiatry Research 26, 223238.
Cornblatt, B. A., Lenzenweger, M. F. & Erlenmeyer-Kimling, L. (1989). The Continuous Performance Test, Identical Pairs Version (CPT-IP). II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Research 29, 6586.
DeLisi, L. E., Buchsbaum, M. S., Holcomb, H. H., Langston, K. C., King, A. C., Kessler, R., Pickar, D., Carpenter, W. T. Jr., Morihisa, J. M., Margolin, R. & Weinberger, D. R. (1989). Increased temporal lobe glucose use in chronic schizophrenic patients. Biological Psychiatry 25, 835851.
Geider, F. J., Rogge, K.-E. & Schaaf, H. P. (1982). Einstieg in die Faktorenanalyse. Quelle & Mayer: Heidelberg.
Guenther, W., Petsch, R., Steinberg, R., Moser, E., Streck, P., Heller, H., Kurtz, G. & Hippius, H. (1991). Brain dysfunction during motor activation and corpus callosum alterations in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biological Psychiatry 29, 535555.
Haier, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchsbaum, M. S. (1991). Regional glucose metabolic changes after learning a complex visuospatial motor task: a positron emission tomographic study. Brain Research 570, 134143.
Harris, G. J., Links, J. M., Pearlson, G. D. & Camargo, E. E. (1991). Cortical circumferential profile of SPECT cerebral perfusion in Alzheimer's disease. Psychiatry Research: Neuroimaging 40, 167180.
Heinrichs, D. W. & Buchanan, R. W. (1988). Significance and meaning of neurological signs in schizophrenia. American Journal of Psychiatry 145, 1118.
Hoffman, R. E., Buchsbaum, M. S., Escobar, M. D., Makuch, R. W., Nuechterlein, K. H. & Guich, S. M. (1991). EEG coherence of prefrontal areas in normal and schizophrenic males during perceptual activation. Journal of Neuropsychiatry and Clinical Neurosciences 3, 169175.
Horwitz, B., Swedo, S. E., Grady, C. L., Pietrini, P., Schapiro, M. B., Rapoport, J. L. & Rapoport, S. I. (1991). Cerebral metabolic pattern in obsessive–compulsive disorder: altered intercorrelations between regional rates of glucose utilization. Psychiatry Research: Neuroimaging 40, 221237.
Ingvar, D. H. & Franzen, G. 91974). Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica 50, 425462.
Kraepelin, E. (1913). Psychiatrie Ein Lehrbuch für Studierende und Ärzte. Band III, Teil 2. 8. Auflage. Johann Ambrosius Barth Verlag: Leipzig.
Kraus, A. (1974). Stoerungen der Wahrnehmung und des Leiberlebens beim Parkinsonismus. Klinischer Beitrag zur Theorie der Einheit von Wahrnehmen und Bewegung. Nervenarzt 45, 639646.
LaBerge, D. (1994). Thalamic and cortical mechanisms of attention suggested by recent positron emission tomographic experiments. Journal of Cognitive Neuroscience 2, 358372.
Lukoff, D., Nuechterlein, K. H. & Ventura, J. (1986). Manual for expanded Brief Psychiatric Rating Scale (BPRS). Schizophrenia Bulletin 12, 594602.
Mirsky, A. F. (1987). Behavioral and psychophysiological markers of disordered attention. Environmental Healthy Perspectives 74, 191199.
Nuechterlein, K. H. (1983). Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. Journal of Abnormal Psychology 92, 428.
Nuechterlein, K. H., Parasuraman, R. & Jiang, Q. (1983). Visual sustained attention: image degradation produces rapid decrement over time. Science 220, 327329.
Overall, J. E. & Gorham, D. R. (1962). The Brief Psychiatric Rating Scale. Psychological Reports 10, 799812.
Pandya, D. N. & Yeterian, E. H. (1985). Architecture and connections of cortical association areas. In Cerebral Cortex: Association and Auditory Cortices, vol. 4 (ed. Peters, A. and Jones, E. G.), pp. 361. Plenum Press: New York.
Petersen, S. E., Corbetta, M., Miezin, F. M. & Dobmeyer, S. M. (1989). Selective attention modulates visual processing of form, color and velocity. III. Areas related to higher-order selective processes. Journal of Neuroscience 15, 624.
SAS Institute. (1990). SAS Language (6th edn). SAS Institute: Raleigh, NC.
Schroeder, J., Niethammer, R., Geider, F.-J., Reitz, Ch., Binkert, M., Jauss, M. & Sauer, H. (1992). Neurological soft signs in schizophrenia. Schizophrenia Research 6, 2530.
Schroeder, J., Richter, P., Geider, F. J., Niethammer, R., Binkert, M., Rietz, Ch. & Sauer, H. (1993). Diskrete motorische und sensorische Storungen in Akutverlauf endogener Psychosen. Zeitschrift für klinische Psychologie, Psychopathologie und Psychotherapie 41, 190206.
Siegel, B. V., Asarnow, R., Tanguay, P., Call, J. D., Abel, L., Ho, A., Lott, I. & Buchsbaum, M. S. (1992). Regional cerebral glucose metabolism and attention in adults with a history of childhood autism. Journal of Neuropsychiatry and Clinical Neurosciences 4, 406414.
Volkow, N. D. & Tancredi, L. R. (1991). Biological correlates of mental activity studies with PET. American Journal of Psychiatry 148, 439442.
Volkow, N. D., Brodie, J. D., Wolf, A. P., Gomez-Mont, F., Cancro, R., Van Gelder, P., Russell, J. A. G. & Overall, J. (1986). Brain organization in schizophrenia. Journal of Cerebral Blood Flow and Metabolism 6, 441446.
Walker, E. & Green, M. (1982). Motor proficiency and attentional-task performance by psychotic patients. Journal of Abnormal Psychology 91, 261268.
Weinberger, D. R., Berman, K. F. & Illowsky, B. P. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry 45, 609615.
Wing, J. K., Cooper, J. E. & Sartorius, N. (1974). Measurement and Classification of Psychiatric Symptoms. Cambridge University Press: London.

Patterns of cortical activity in schizophrenia

  • J. Schroeder (a1), M. S. Buchsbaum (a1), B. V. Siegel (a1), F. J. Geider (a1), R. J. Haier (a1), J. Lohr (a1), J. Wu (a1) and S. G. Potkin (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed