Skip to main content Accessibility help

Patients with obsessive–compulsive disorder are impaired in associative learning based on external feedback

  • M. M. Nielen (a1), J. A. den Boer (a2) and H. G. O. M. Smid (a3)



Patients with obsessive–compulsive disorder (OCD) have to repeat their actions before feeling satisfied that the action reached its intended goal. Learning theory predicts that this may be due to a failure in the processing of external feedback.


We examined the performance of 29 OCD patients and 28 healthy volunteers on an associative learning task, in which initial learning is based solely on external feedback signals. Feedback valence was manipulated with monetary gains and losses.


As predicted, OCD patients were impaired during initial, external feedback-driven learning but not during later learning stages. The emotional salience of the feedback modulated learning during the initial stage in patients and controls alike. During later learning stages, however, patients approached near-normal performance with rewarding feedback but continued to produce deficient learning with punishing feedback.


OCD patients have a fundamental impairment in updating behavior based on the external outcome of their actions, possibly mediated by faulty error signals in response selection processes.


Corresponding author

*Address for correspondence: H. G. O. M. Smid, Ph.D., Department of Psychiatry, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands. (Email:


Hide All
Aouizerate, B, Guehl, D, Cuny, E, Rougier, A, Bioulac, B, Tignol, J, Burbaud, P (2004). Pathophysiology of obsessive–compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Progress in Neurobiology 72, 195221.
APA (1994). Diagnostic and statistical Manual of Mental Disorders, 4th edn. Washington, DC: American Psychiatric Association.
Bohne, A, Savage, CR, Deckersbach, T, Keuthen, NJ, Jenike, MA, Tuschen-Caffier, B, Wilhelm, S (2005). Visuospatial abilities, memory, and executive functioning in trichotillomania and obsessive–compulsive disorder. Journal of Clinical and Experimental Neuropsychology 27, 385399.
Braver, TS, Cohen, JD (2000). On the control of control: the role of dopamine in regulating prefrontal function. In Attention and Performance (ed. Monsell, S. and Driver, J.), vol. 18, pp. 713737. MIT Press: Cambridge, MA.
Chamberlain, SR, Blackwell, AD, Fineberg, NA, Robbins, TW, Sahakian, BJ (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neuroscience and Biobehavioural Reviews 29, 399419.
Endrass, T, Klawohn, J, Schuster, F, Kathmann, N (2008). Overactive performance monitoring in obsessive–compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia 46, 18771887.
Fitzgerald, KD, Welsh, RC, Gehring, WJ, Abelson, JL, Himle, JA, Liberzon, I, Taylor, SF (2005). Error-related hyperactivity of the anterior cingulate cortex in obsessive–compulsive disorder. Biological Psychiatry 57, 287294.
Gehring, WJ, Himle, J, Nisenson, LG (2000). Action-monitoring dysfunction in obsessive–compulsive disorder. Psychological Science 11, 16.
Goodman, WK, Price, LH, Rasmussen, SH, Mazure, C, Fleischmann, RL, Hill, CL, Heninger, GR, Charney, DS (1989). The Yale–Brown Obsessive–Compulsive Scale. 1. Development, use, and reliability. Archives of General Psychiatry 46, 10061011.
Hamilton, M (1960). Diagnosis and rating scale for depression. British Journal of Psychiatry 3, 7678.
Holroyd, CB, Coles, MG (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review 10, 679709.
Iaboni, F, Douglas, VI, Baker, AG (1995). Effects of reward and response costs on inhibition in ADHD children. Journal of Abnormal Psychology 104, 232240.
Leplow, B, Murphy, R, Nutzinger, DO (2002). Specificity of conditional associative-learning deficits in obsessive–compulsive disorder (OCD) and non-OCD anxiety disorders. Journal of Clinical and Experimental Neuropsychology 24, 792805.
Mataix-Cols, D, Rosario-Campos, MC, Leckman, JF (2005). A multidimensional model of obsessive–compulsive disorder. American Journal of Psychiatry 162, 228238.
Murphy, R, Nutzinger, DO, Paul, T, Leplow, B (2004). Conditional-associative learning in eating disorders: a comparison with OCD. Journal of Clinical and Experimental Neuropsychology 26, 190199.
Nie, NH, Hadlai Hull, C, Jenkins, JG, Steinbrenner, K, Bent, DH (1986). SPSS: Statistical Package for the Social Sciences, 2nd edn. McGraw-Hill: New York.
O'Doherty, J, Kringelbach, ML, Rolls, ET, Hornak, J, Andrews, C (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience 4, 95102.
Olley, A, Malhi, G, Sachdev, P (2007). Memory and executive functioning in obsessive–compulsive disorder: a selective review. Journal of Affective Disorders 104, 1523.
Otto, MW (1992). Normal and abnormal information processing. A neuropsychological perspective on obsessive compulsive disorder. Psychiatric Clinics of North America 15, 825848.
Passingham, RE, Toni, I, Rushworth, MF (2000). Specialization within the prefrontal cortex: the ventral prefrontal cortex and associative learning. Experimental Brain Research 133, 103113.
Pitman, RK (1987). A cybernetic model of obsessive–compulsive psychopathology. Comprehensive Psychiatry 28, 334343.
Purcell, R, Maruff, P, Kyrios, M, Pantelis, C (1998). Neuropsychological deficits in obsessive–compulsive disorder: a comparison with unipolar depression, panic disorder, and normal controls. Archives of General Psychiatry 55, 415423.
Remijnse, PL, Nielen, MM, van Balkom, AJ, Cath, DC, van Oppen, P, Uylings, HB, Veltman, DJ (2006). Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive–compulsive disorder. Archives of General Psychiatry 63, 12251236.
Schwartz, JM (1999). A role of volition and attention in the generation of new brain circuitry. Toward a neurobiology of mental force. Journal of Consciousness Studies 6, 115142.
Sutton, RS, Barto, AG (1998). Reinforcement Learning: An Introduction. MIT Press: Cambridge, MA.
Szechtman, H, Woody, E (2004). Obsessive–compulsive disorder as a disturbance of security motivation. Psychological Review 111, 111127.
Toni, I, Passingham, RE (1999). Prefrontal-basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Experimental Brain Research 127, 1932.
Veale, DM, Sahakian, BJ, Owen, AM, Marks, IM (1996). Specific cognitive deficits in tests sensitive to frontal lobe dysfunction in obsessive–compulsive disorder. Psychological Medicine 26, 12611269.


Patients with obsessive–compulsive disorder are impaired in associative learning based on external feedback

  • M. M. Nielen (a1), J. A. den Boer (a2) and H. G. O. M. Smid (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed