Skip to main content Accessibility help

Parsing components of auditory predictive coding in schizophrenia using a roving standard mismatch negativity paradigm

  • Amanda McCleery (a1) (a2), Daniel H. Mathalon (a3) (a4), Jonathan K. Wynn (a1) (a2), Brian J. Roach (a3), Gerhard S. Hellemann (a1) (a2), Stephen R. Marder (a1) (a2) and Michael F. Green (a1) (a2)...



Mismatch negativity (MMN) is an event-related potential (ERP) component reflecting auditory predictive coding. Repeated standard tones evoke increasing positivity (‘repetition positivity’; RP), reflecting strengthening of the standard's memory trace and the prediction it will recur. Likewise, deviant tones preceded by more standard repetitions evoke greater negativity (‘deviant negativity’; DN), reflecting stronger prediction error signaling. These memory trace effects are also evident in MMN difference wave. Here, we assess group differences and test-retest reliability of these indices in schizophrenia patients (SZ) and healthy controls (HC).


Electroencephalography was recorded twice, 2 weeks apart, from 43 SZ and 30 HC, during a roving standard paradigm. We examined ERPs to the third, eighth, and 33rd standards (RP), immediately subsequent deviants (DN), and the corresponding MMN. Memory trace effects were assessed by comparing amplitudes associated with the three standard repetition trains.


Compared with controls, SZ showed reduced MMNs and DNs, but normal RPs. Both groups showed memory trace effects for RP, MMN, and DN, with a trend for attenuated DNs in SZ. Intraclass correlations obtained via this paradigm indicated good-to-moderate reliabilities for overall MMN, DN and RP, but moderate to poor reliabilities for components associated with short, intermediate, and long standard trains, and poor reliability of their memory trace effects.


MMN deficits in SZ reflected attenuated prediction error signaling (DN), with relatively intact predictive code formation (RP) and memory trace effects. This roving standard MMN paradigm requires additional development/validation to obtain suitable levels of reliability for use in clinical trials.


Corresponding author

Author for correspondence: Amanda McCleery, E-mail:


Hide All

Co-first authors.



Hide All
Adams, RA, Stephan, KE, Brown, HR, Frith, CD and Friston, KJ (2013) The computational anatomy of psychosis. Frontiers in Psychiatry 4, 126.
Alho, K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing 16, 3851.
American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, 4th Edn. (DSM-IV), Washington, DC: American Psychiatric Association.
Avissar, M, Xie, S, Vail, B, Lopez-Calderon, J, Wang, Y and Javitt, DC (2017) Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophrenia Research 191, 2534.
Baldeweg, T (2007) ERP repetition effects and mismatch negativity generation: a predictive coding perspective. Journal of Psychophysiology 21, 204213.
Baldeweg, T and Hirsch, SR (2015) Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: a comparison with bipolar disorder and Alzheimer's disease. International Journal of Psychophysiology 95, 145155.
Baldeweg, T, Klugman, A, Gruzelier, J and Hirsch, SR (2004) Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophrenia Research 69, 203217.
Baldeweg, T, Wong, D and Stephan, KE (2006) Nicotinic modulation of human auditory sensory memory: evidence from mismatch negativity potentials. International Journal of Psychophysiology 59, 4958.
Benjamin, L (1994) Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID II). New York, NY: Biometric Research Department, New York: State Psychiatric Institute.
Biagianti, B, Roach, BJ, Fisher, M, Loewy, R, Ford, JM, Vinogradov, S and Mathalon, DH (2017) Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia. Neuropsychiatric Electrophysiology 3, 2.
Bodatsch, M, Ruhrmann, S, Wagner, M, Müller, R, Schultze-Lutter, F, Frommann, I, Brinkmeyer, J, Gaebel, W, Maier, W, Klosterkötter, J and Brockhaus-Dumke, A (2011) Prediction of psychosis by mismatch negativity. Biological Psychiatry 69, 959966.
Breen, EC, Perez, C, Olmstead, R, Eisenberger, N and Irwin, MR (2014) 135. Comparison of multiplex immunoassays and ELISAs for the determination of circulating levels of inflammatory cytokines. Brain, Behavior, and Immunity 40, e39.
Cowan, N, Winkler, I, Teder, W and Naatanen, R (1993) Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). Journal of Experimental Psychology: Learning, Memory, and Cognition 19, 909921.
Csépe, V (1995) On the origin and development of the mismatch negativity. Ear and Hearing 16, 91104.
Deouell, LY, Bentin, S and Giard, M-H (1998) Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology 35, 355365.
Erickson, MA, Ruffle, A and Gold, JM (2016) A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biological Psychiatry 79, 980987.
First, M and Gibbon, M (2004) The structured clinical interview for DSM-IV axis I disorders (SCID-I) and the structured clinical interview for DSM-IV axis II disorders (SCID-II). In Hilsenroth, MJ and Segal, DL (eds), Comprehensive Handbook of Psychological Assessment, vol. 2. Personality assessment. Hoboken, NJ, USA: John Wiley & Sons Inc, pp. 134143.
First, M, Williams, J, Karg, R and Spitzer, R (2014) Structured Clinical Interview for DSM-5 Disorders (SCID-5), Research Version. Arlington, VA: American Psychiatric Association.
Fletcher, PC and Frith, CD (2009) Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience 10, 4858.
Friedman, T, Sehatpour, P, Dias, E, Perrin, M and Javitt, DC (2012) Differential relationships of mismatch negativity and visual P1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biological Psychiatry 71, 521529.
Friston, K (2005) A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 815836.
Friston, KJ, Stephan, KE, Montague, R and Dolan, RJ (2014) Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry 1, 148158.
Garrido, MI, Kilner, JM, Kiebel, SJ, Stephan, KE, Baldeweg, T and Friston, KJ (2009 a) Repetition suppression and plasticity in the human brain. Neuroimage 48, 269279.
Garrido, MI, Kilner, JM, Stephan, KE and Friston, KJ (2009 b) The mismatch negativity: a review of underlying mechanisms. Clinical Neurophysiology 120, 453463.
Giard, M, Perrin, F, Pernier, J and Bouchet, P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27, 627640.
Goodman, SH, Sewell, DR, Cooley, EL and Leavitt, N (1993) Assessing levels of adaptive functioning: the role functioning scale. Community Mental Health Journal 29, 119131.
Haenschel, C, Vernon, DJ, Dwivedi, P, Gruzelier, JH and Baldeweg, T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. Journal of Neuroscience 25, 1049410501.
Haigh, SM, Coffman, BA and Salisbury, DF (2017) Mismatch negativity in first-episode schizophrenia. Clinical EEG and Neuroscience 48, 310.
Hall, MH, Schulze, K, Rijsdijk, F, Picchioni, M, Ettinger, U, Bramon, E, Freedman, R, Murray, RM and Sham, P (2006) Heritability and reliability of P300, P50 and duration mismatch negativity. Behavior Genetics 36, 845857.
Hamilton, HK, Perez, VB, Ford, JM, Roach, BJ, Jaeger, J and Mathalon, DH (2017) Mismatch negativity but not P300 Is associated with functional disability in schizophrenia. Schizophrenia Bulletin 44, 492504.
Hay, RA, Roach, BJ, Srihari, VH, Woods, SW, Ford, JM and Mathalon, DH (2015) Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients. Biological Psychology 105C, 130137.
Heilbron, M and Chait, M (2017) Great expectations: is there evidence for predictive coding in auditory cortex? Neuroscience 389, 5473.
Horga, G, Schatz, KC, Abi-Dargham, A and Peterson, BS (2014) Deficits in predictive coding underlie hallucinations in schizophrenia. Journal of Neuroscience 34, 80728082.
Javitt, DC, Grochowski, S, Shelley, AM and Ritter, W (1998) Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalography and Clinical Neurophysiology 108, 143153.
Kiang, M, Light, GA, Prugh, J, Coulson, S, Braff, DL and Kutas, M (2007) Cognitive, neurophysiological, and functional correlates of proverb interpretation abnormalities in schizophrenia. Journal of the International Neuropsychological Society 13, 653663.
Kring, AM, Gur, RE, Blanchard, JJ, Horan, WP and Reise, SP (2013) The Clinical Assessment Interview for Negative Symptoms (CAINS): final development and validation. American Journal of Psychiatry 170, 165172.
Lalanne, L, Van Assche, M and Giersch, A (2012) When predictive mechanisms go wrong: disordered visual synchrony thresholds in schizophrenia. Schizophrenia Bulletin 38, 506513.
Levanen, S, Hari, R, McEvoy, L and Sams, M (1993) Responses of the human auditory cortex to changes in one versus two stimulus features. Experimental Brain Research 97, 177183.
Lew, HL, Gray, M and Poole, JH (2007) Temporal stability of auditory event-related potentials in healthy individuals and patients with traumatic brain injury. Journal of Clinical Neurophysiology 24, 392397.
Light, GA and Braff, DL (2005) Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Archives of General Psychiatry 62, 127136.
Light, GA, Swerdlow, NR, Rissling, AJ, Radant, A, Sugar, CA, Sprock, J, Pela, M, Geyer, MA and Braff, DL (2012) Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PLoS ONE 7, e39434.
Light, GA, Swerdlow, NR, Thomas, ML, Calkins, ME, Green, MF, Greenwood, TA, Gur, RE, Gur, RC, Lazzeroni, LC, Nuechterlein, KH, Pela, M, Radant, AD, Seidman, LJ, Sharp, RF, Siever, LJ, Silverman, JM, Sprock, J, Stone, WS, Sugar, CA, Tsuang, DW, Tsuang, MT, Braff, DL and Turetsky, BI (2015) Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: characterization of demographic, clinical, cognitive, and functional correlates in COGS-2. Schizophrenia Research 163, 6372.
Lukoff, D, Nuechterlein, KH and Ventura, J (1986) Manual for the expanded brief psychiatric rating scale. Schizophrenia Bulletin 12, 594602.
Michie, PT, Budd, TW, Todd, J, Rock, D, Wichmann, H, Box, J and Jablensky, AV (2000) Duration and frequency mismatch negativity in schizophrenia. Clinical Neurophysiology 111, 10541065.
Molholm, S, Martinez, A, Ritter, W, Javitt, DC and Foxe, JJ (2004) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cerebral Cortex 15, 545551.
Näätänen, R (2008) Mismatch negativity (MMN) as an index of central auditory system plasticity. International Journal of Audiology 47, S16S20.
Näätänen, R and Kähkönen, S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. International Journal of Neuropsychopharmacology 12, 125135.
Näätänen, R, Paavilainen, P, Rinne, T and Alho, K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology 118, 25442590.
Nagai, T, Tada, M, Kirihara, K, Yahata, N, Hashimoto, R, Araki, T and Kasai, K (2013) Auditory mismatch negativity and P3a in response to duration and frequency changes in the early stages of psychosis. Schizophrenia Research 150, 547554.
Nazimek, JM, Hunter, MD and Woodruff, PWR (2012) Auditory hallucinations: expectation-perception model. Medical Hypotheses 78, 802810.
Nuechterlein, K and Green, M (2006) MCCB: Matrics Consensus Cognitive Battery. Los Angeles, CA: MATRICS Assessment Inc.
Paavilainen, P, Alho, K, Reinikainen, K, Sams, M and Näätänen, R (1991) Right hemisphere dominance of different mismatch negativities. Electroencephalography and Clinical Neurophysiology 78, 466479.
Paavilainen, P, Valppu, S, Naatanen, R and Näätänen, R (2001) The additivity of the auditory feature analysis in the human brain as indexed by the mismatch negativity: 1 + 1 ≈ 2 but 1 + 1 + 1 < 3. Neuroscience Letters 301, 179182.
Perez, VB, Woods, SW, Roach, BJ, Ford, JM, McGlashan, TH, Srihari, VH and Mathalon, DH (2014) Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biological Psychiatry 75, 459469.
Perez, VB, Tarasenko, M, Miyakoshi, M, Pianka, ST, Makeig, SD, Braff, DL, Swerdlow, NR and Light, GA (2017) Mismatch negativity is a sensitive and predictive biomarker of perceptual learning during auditory cognitive training in schizophrenia. Neuropsychopharmacology 42, 22062213.
Rissling, AJ, Park, S-H, Young, JW, Rissling, MB, Sugar, CA, Sprock, J, Mathias, DJ, Pela, M, Sharp, RF, Braff, DL and Light, GA (2013) Demand and modality of directed attention modulate ‘pre-attentive’ sensory processes in schizophrenia patients and nonpsychiatric controls. Schizophrenia Research 146, 326335.
Schmack, K, Schnack, A, Priller, J and Sterzer, P (2015) Perceptual instability in schizophrenia: probing predictive coding accounts of delusions with ambiguous stimuli. Schizophrenia Research Cognition 2, 7277.
Schroger, E (1995) Processing of auditory deviants with changes in one versus two stimulus dimensions. Psychophysiology 32, 5565.
Schultz, W and Dickinson, A (2000) Neuronal coding of prediction errors. Annual Review of Neuroscience 23, 473500.
Shrout, PE and Fleiss, JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin 86, 420428.
Stephan, KE, Baldeweg, T and Friston, KJ (2006) Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry 59, 929939.
Stephan, KE, Friston, KJ and Frith, CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin 35, 509527.
Takegata, R, Paavilainen, P, Naatanen, R, Winkler, I, Näätänen, R and Winkler, I (1999) Independent processing of changes in auditory single features and feature conjunctions in humans as indexed by the mismatch negativity. Neuroscience Letters 266, 109112.
Thomas, ML, Green, MF, Hellemann, G, Sugar, CA, Tarasenko, M, Calkins, ME, Greenwood, TA, Gur, RE, Gur, RE, Lazzeroni, LC, Nuechterlein, KH, Radant, AD, Seidman, LJ, Shiluk, AL, Siever, LJ, Silverman, JM, Sprock, J, Stone, WS, Swerdlow, NR, Tsuang, DW, Tsuang, MT, Turetsky, BI, Braff, DL and Light, GA (2017) Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia. JAMA Psychiatry 74, 3746.
Todd, J, Michie, PT, Schall, U, Karayanidis, F, Yabe, H and Näätänen, R (2008) Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biological Psychiatry 63, 5864.
Todd, J, Harms, L, Schall, U and Michie, PT (2013) Mismatch negativity: translating the potential. Frontiers in Psychiatry 4, 122.
Umbricht, D and Krljes, S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophrenia Research 76, 123.
Wacongne, C (2016) A predictive coding account of MMN reduction in schizophrenia. Biological Psychology 116, 6874.
Wacongne, C, Changeux, J-P and Dehaene, S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience 32, 36653678.
Winkler, I and Czigler, I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. International Journal of Psychophysiology 83, 132143.
Winkler, I, Reinikainen, K and Näätänen, R (1993) Event-related brain potentials reflect traces of echoic memory in humans. Perception & Psychophysics 53, 443449.
Winkler, I, Cowan, N, Csépe, V, Czigler, I and Näätänen, R (1996) Interactions between transient and long-term auditory memory as reflected by the mismatch negativity. Journal of Cognitive Neuroscience 8, 403415.
Wolff, C and Schröger, E (2001) Human pre-attentive auditory change-detection with single, double, and triple deviations as revealed by mismatch negativity additivity. Neuroscience Letters 311, 3740.
Wynn, JK, Sugar, C, Horan, WP, Kern, R and Green, MF (2010) Mismatch negativity, social cognition, and functioning in schizophrenia patients. Biological Psychiatry 67, 940947.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

McCleery supplementary material
McCleery supplementary material 1

 Word (34 KB)
34 KB

Parsing components of auditory predictive coding in schizophrenia using a roving standard mismatch negativity paradigm

  • Amanda McCleery (a1) (a2), Daniel H. Mathalon (a3) (a4), Jonathan K. Wynn (a1) (a2), Brian J. Roach (a3), Gerhard S. Hellemann (a1) (a2), Stephen R. Marder (a1) (a2) and Michael F. Green (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.