Skip to main content Accessibility help
×
Home

Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients

  • L. Schmaal (a1) (a2), A. E. Goudriaan (a1) (a3), L. Joos (a4), G. Dom (a4) (a5), T. Pattij (a6), W. van den Brink (a1) and D. J. Veltman (a2)...

Abstract

Background

Impulsive decision making is a hallmark of frequently occurring addiction disorders including alcohol dependence (AD). Therefore, ameliorating impulsive decision making is a promising target for the treatment of AD. Previous studies have shown that modafinil enhances cognitive control functions in various psychiatric disorders. However, the effects of modafinil on delay discounting and its underlying neural correlates have not been investigated as yet. The aim of the current study was to investigate the effects of modafinil on neural correlates of impulsive decision making in abstinent AD patients and healthy control (HC) subjects.

Method

A randomized, double-blind, placebo-controlled, within-subjects cross-over study using functional magnetic resonance imaging (fMRI) was conducted in 14 AD patients and 16 HC subjects. All subjects participated in two fMRI sessions in which they either received a single dose of placebo or 200 mg of modafinil 2 h before the session. During fMRI, subjects completed a delay-discounting task to measure impulsive decision making.

Results

Modafinil improved impulsive decision making in AD pateints, which was accompanied by enhanced recruitment of frontoparietal regions and reduced activation of the ventromedial prefrontal cortex. Moreover, modafinil-induced enhancement of functional connectivity between the superior frontal gyrus and ventral striatum was specifically associated with improvement in impulsive decision making.

Conclusions

These findings indicate that modafinil can improve impulsive decision making in AD patients through an enhanced coupling of prefrontal control regions and brain regions coding the subjective value of rewards. Therefore, the current study supports the implementation of modafinil in future clinical trials for AD.

Copyright

Corresponding author

* Address for correspondence: Dr L. Schmaal, Department of Psychiatry, VU University Medical Center, PO Box 74077, 1070 BB Amsterdam, The Netherlands. (Email: lianschmaal@gmail.com)

References

Hide All
Abe, M, Hanakawa, T, Takayama, Y, Kuroki, C, Ogawa, S, Fukuyama, H (2007). Functional coupling of human prefrontal and premotor areas during cognitive manipulation. Journal of Neuroscience 27, 34293438.
Anderson, AL, Reid, MS, Li, SH, Holmes, T, Shemanski, L, Slee, A, Smith, EV, Kahn, R, Chiang, N, Vocci, F, Ciraulo, D, Dackis, C, Roache, JD, Salloum, IM, Somoza, E, Urschel, HC 3rd, Elkashef, AM (2009). Modafinil for the treatment of cocaine dependence. Drug and Alcohol Dependence 104, 133139.
APA (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Press: Washington, DC.
Baarendse, PJ, Vanderschuren, LJ (2012). Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats. Psychopharmacology (Berlin) 219, 313326.
Babor, TF, Kranzler, HR, Lauerman, RJ (1989). Early detection of harmful alcohol consumption: comparison of clinical, laboratory, and self-report screening procedures. Addictive Behaviors 14, 139157.
Bickel, WK, Jones, BA, Landes, RD, Christensen, DR, Jackson, L, Mancino, M (2010). Hypothetical intertemporal choice and real economic behavior: delay discounting predicts voucher redemptions during contingency-management procedures. Experimental and Clinical Psychopharmacology 18, 546552.
Bickel, WK, Pitcock, JA, Yi, R, Angtuaco, EJ (2009). Congruence of BOLD response across intertemporal choice conditions: fictive and real money gains and losses. Journal of Neuroscience 29, 88398846.
Bjork, JM, Hommer, DW, Grant, SJ, Danube, C (2004). Impulsivity in abstinent alcohol-dependent patients: relation to control subjects and type 1-/type 2-like traits. Alcohol 34, 133150.
Bohn, MJ, Krahn, DD, Staehler, BA (1995). Development and initial validation of a measure of drinking urges in abstinent alcoholics. Alcoholism: Clinical and Experimental Research 19, 600606.
Brett, M, Anton, J-L, Valabreque, R, Poline, J-B (2002). Region of interest analysis using an SPM toolbox [Abstract]. Presented at the 8th International Conference on Functional Mapping of the Human Brain, 2–6 June 2002, Sendai, Japan. (Available on CD-ROM in NeuroImage, vol. 16, no. 2.).
Broos, N, Diergaarde, L, Schoffelmeer, AN, Pattij, T, De Vries, TJ (2012 a). Trait impulsive choice predicts resistance to extinction and propensity to relapse to cocaine seeking: a bidirectional investigation. Neuropsychopharmacology 37, 13771386.
Broos, N, Schmaal, L, Wiskerke, J, Kostelijk, L, Lam, T, Stoop, N, Weierink, L, Ham, J, De Geus, EJC, Schoffelmeer, ANM, Van den Brink, W, Veltman, DJ, De Vries, TJ, Pattij, T, Goudriaan, AE (2012 b). The relationship between impulsive choice and impulsive action: a cross-species translational study. PLOS ONE 7, e37781.
Buckner, RL, Andrews-Hanna, JR, Schacter, DL (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Acadamy of Sciences 1124, 138.
Calzavara, R, Mailly, P, Haber, SN (2007). Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. European Journal of Neuroscience 26, 20052024.
Claus, ED, Kiehl, KA, Hutchison, KE (2011). Neural and behavioral mechanisms of impulsive choice in alcohol use disorder. Alcoholism: Clinical and Experimental Research 35, 12091219.
Cools, R, Barker, RA, Sahakian, BJ, Robbins, TW (2001). Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cerebral Cortex 11, 11361143.
Cools, R, Barker, RA, Sahakian, BJ, Robbins, TW (2003). l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia 41, 14311441.
Cools, R, D'Esposito, M (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry 69, e113e125.
Dean, AC, Sevak, RJ, Monterosso, JR, Hellemann, G, Sugar, CA, London, ED (2011). Acute modafinil effects on attention and inhibitory control in methamphetamine-dependent humans. Journal of Studies on Alcohol and Drugs 72, 943953.
Diergaarde, L, Pattij, T, Poortvliet, I, Hogenboom, F, De Vries, W, Schoffelmeer, AN, De Vries, TJ (2008). Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biological Psychiatry 63, 301308.
Evenden, JL (1999). Varieties of impulsivity. Psychopharmacology (Berlin) 146, 348361.
Ferraro, L, Antonelli, T, O'Connor, WT, Tanganelli, S, Rambert, FA, Fuxe, K (1998). The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neuroscience Letters 253, 135138.
Finke, K, Dodds, CM, Bublak, P, Regenthal, R, Baumann, F, Manly, T, Müller, U (2010). Effects of modafinil and methylphenidate on visual attention capacity: a TVA-based study. Psychopharmacology (Berlin) 210, 317329.
Ghahremani, DG, Tabibnia, G, Monterosso, J, Hellemann, G, Poldrack, RA, London, ED (2011). Effect of modafinil on learning and task-related brain activity in methamphetamine-dependent and healthy individuals. Neuropsychopharmacology 36, 950959.
Golde, M, von Cramon, DY, Schubotz, RI (2010). Differential role of anterior prefrontal and premotor cortex in the processing of relational information. NeuroImage 49, 28902900.
Gossop, M, Keaney, F, Stewart, D, Marshall, EJ, Strang, J (2002). A Short Alcohol Withdrawal Scale (SAWS): development and psychometric properties. Addiction Biology 7, 3743.
Greely, H, Sahakian, B, Harris, J, Kessler, RC, Gazzaniga, M, Campbell, P, Farah, MJ (2008). Towards responsible use of cognitive-enhancing drugs by the healthy. Nature 456, 702705.
Green, L, Myerson, J, Lichtman, D, Rosen, S, Fry, A (1996). Temporal discounting in choice between delayed rewards: the role of age and income. Psychology and Aging 11, 7984.
Hanakawa, T, Honda, M, Sawamoto, N, Okada, T, Yonekura, Y, Fukuyama, H, Shibasaki, H (2002). The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach. Cerebral Cortex 12, 11571170.
Hanlon, CA, Wesley, MJ, Stapleton, JR, Laurienti, PJ, Porrino, LJ (2011). The association between frontal-striatal connectivity and sensorimotor control in cocaine users. Drug and Alcohol Dependence 115, 240243.
Hart, CL, Haney, M, Vosburg, SK, Rubin, E, Foltin, RW (2008). Smoked cocaine self-administration is decreased by modafinil. Neuropsychopharmacology 33, 761768.
Hasin, DS, Stinson, FS, Ogburn, E, Grant, BF (2007). Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Archives of General Psychiatry 64, 830842.
Hoffman, WF, Schwartz, DL, Huckans, MS, McFarland, BH, Meiri, G, Stevens, AA, Mitchell, SH (2008). Cortical activation during delay discounting in abstinent methamphetamine dependent individuals. Psychopharmacology (Berlin) 201, 183193.
Hunter, MD, Ganesan, V, Wilkinson, ID, Spence, SA (2006). Impact of modafinil on prefrontal executive function in schizophrenia. American Journal of Psychiatry 163, 21842186.
Joos, L, Docx, L, Schmaal, L, Sabbe, BG, Dom, G (2010). Modafinil in psychiatric disorders: the promising state reconsidered. Tijdschrift voor Psychiatry 52, 763773.
Kable, JW, Glimcher, PW (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience 10, 16251633.
Kable, JW, Glimcher, PW (2010). An “as soon as possible” effect in human intertemporal decision making: behavioral evidence and neural mechanisms. Journal of Neurophysiology 103, 25132531.
Kalechstein, AD, De La Garza, R, Newton, TF (2010). Modafinil administration improves working memory in methamphetamine-dependent individuals who demonstrate baseline impairment. American Journal of Addiction 19, 340344.
Kim, C, Chung, C, Kim, J (2012). Conflict adjustment through domain-specific multiple cognitive control mechanisms. Brain Research 1444, 5564.
Kirby, KN, Godoy, R, Reyes-Garcia, V, Byron, E, Apaza, L, Leonard, W, Pérez, E, Vadez, V, Wilkie, D (2002). Correlates of delay-discount rates: evidence from Tsimane’ Amerindians of the Bolivian rain forest. Journal of Economic Psychology 23, 291316.
Liston, C, Watts, R, Tottenham, N, Davidson, MC, Niogi, S, Ulug, AM, Casey, BJ (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex 16, 553560.
Luppino, G, Rozzi, S, Calzavara, R, Matelli, M (2003). Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. European Journal of Neuroscience 17, 559578.
MacKillop, J, Kahler, CW (2009). Delayed reward discounting predicts treatment response for heavy drinkers receiving smoking cessation treatment. Drug and Alcohol Dependence 104, 197203.
Marco-Pallares, J, Mohammadi, B, Samii, A, Munte, TF (2010). Brain activations reflect individual discount rates in intertemporal choice. Brain Research 1320, 123129.
McClure, SM, Laibson, DI, Loewenstein, G, Cohen, JD (2004). Separate neural systems value immediate and delayed monetary rewards. Science 306, 503507.
McLaren, DG, Ries, ML, Xu, G, Johnson, SC (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage 61, 12771286.
Meade, CS, Lowen, SB, MacLean, RR, Key, MD, Lukas, SE (2011). fMRI brain activation during a delay discounting task in HIV-positive adults with and without cocaine dependence. Psychiatry Research 192, 167175.
Mehta, MA, Manes, FF, Magnolfi, G, Sahakian, BJ, Robbins, TW (2004). Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacology (Berlin) 176, 331342.
Mitchell, JM, Fields, HL, D'Esposito, M, Boettiger, CA (2005). Impulsive responding in alcoholics. Alcohol: Clinical and Experimental Research 29, 21582169.
Mitchell, JP, Schirmer, J, Ames, DL, Gilbert, DT (2011). Medial prefrontal cortex predicts intertemporal choice. Journal of Cognitive Neuroscience 23, 857866.
Monterosso, JR, Ainslie, G, Xu, J, Cordova, X, Domier, CP, London, ED (2007). Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Human Brain Mapping 28, 383393.
Myerson, J, Green, L, Warusawitharana, M (2001). Area under the curve as a measure of discounting. Journal of the Experimental Analysis of Behavior 76, 235243.
Nielsen, FA, Hansen, LK (2002). Automatic anatomical labeling of Talairach coordinates and generation of volumes of interest via the BrainMap database. Presented at the 8th International Conference on Functional Mapping of the Human Brain, 2–6 June 2002, Sendai, Japan. (Available on CD-ROM.).
Petry, NM (2001). Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology (Berlin) 154, 243250.
Reimers, S, Maylor, EA, Stewart, N, Chater, N (2009). Associations between a one-shot delay discounting measure and age, income, education and real-world impulsive behavior. Personality and Individual Differences 47, 973978.
Robertson, M, Hellriegel, ET (2003). Clinical pharmacokinetic profile of modafinil. Clinical Pharmacokinetics 42, 123137.
Sahakian, B, Morein-Zamir, S (2007). Professor's little helper. Nature 450, 11571159.
Schmaal, L, Goudriaan, AE, Joos, L, Krüse, AM, Dom, G, Van den Brink, W, Veltman, DJ (2013 a). Modafinil modulates resting state functional network connectivity and cognitive control in alcohol dependent patients. Biological Psychiatry 73, 789795.
Schmaal, L, Joos, L, Koeleman, M, Veltman, DJ, Van den Brink, W, Goudriaan, AE (2013 b). Effects of modafinil on neural correlates of response inhibition in alcohol dependent patients. Biological Psychiatry 73, 211218.
Schmand, B, Bakker, D, Saan, R, Louman, J (1991). The Dutch Reading Test for Adults: a measure of premorbid intelligence level. Tijdschrift voor Gerontologie en Geriatrie 22, 1519.
Shearer, J, Darke, S, Rodgers, C, Sladie, T, van Beek, I, Lewis, J, Brady, D, McKetin, R, Mattick, RP, Wodak, A (2009). A double-blind, placebo-controlled trial of modafinil (200 mg/day) for methamphetamine dependence. Addiction 104, 224233.
Sheehan, DV, Lecrubier, Y, Sheehan, KH, Amorim, P, Janavs, J, Weiller, E, Hergueta, T, Baker, R, Dunbar, GC (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59 (Suppl. 20), 2233.
Sobell, LC, Sobell, MB (1992). Timeline followback: a technique for assessing self-reported alcohol consumption. In Measuring Alcohol Consumption: Psychosocial and Biological Methods (ed. Litten, R.Z. and Allen, J., editors), pp. 4172. Humana Press: New York.
Spence, SA, Green, RD, Wilkinson, ID, Hunter, MD (2005). Modafinil modulates anterior cingulate function in chronic schizophrenia. British Journal of Psychiatry 187, 5561.
Sripada, CS, Gonzalez, R, Phan, KL, Liberzon, I (2011). The neural correlates of intertemporal decision-making: contributions of subjective value, stimulus type, and trait impulsivity. Human Brain Mapping 32, 16371648.
Stanger, C, Ryan, SR, Fu, H, Landes, RD, Jones, BA, Bickel, WK, Budney, AJ (2011). Delay discounting predicts adolescent substance abuse treatment outcome. Experimental and Clinical Psychopharmacology 20, 205212.
Sun, H, Cocker, PJ, Zeeb, FD, Winstanley, CA (2012). Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex. Psychopharmacology (Berlin) 219, 285301.
Szpunar, KK, Watson, JM, McDermott, KB (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences USA 104, 642647.
Tachibana, Y, Nambu, A, Hatanaka, N, Miyachi, S, Takada, M (2004). Input–output organization of the rostral part of the dorsal premotor cortex, with special reference to its corticostriatal projection. Neuroscience Research 48, 4557.
Takahashi, T, Ohmura, Y, Oono, H, Radford, M (2009). Alcohol use and discounting of delayed and probabilistic gain and loss. Neuroendocrinology Letters 30, 749752.
Touret, M, Sallanon-Moulin, M, Fages, C, Roudier, V, Didier-Bazes, M, Roussel, B, Tardy, M, Jouvet, M (1994). Effects of modafinil-induced wakefulness on glutamine synthetase regulation in the rat brain. Molecular Brain Research 26, 123128.
United Nations Educational Scientific and Cultural Organization (1997). International Standard Classification of Education. UNESCO: Geneva.
Wittmann, M, Leland, DS, Paulus, MP (2007). Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task. Experimental Brain Research 179, 643653.
Wittmann, M, Lovero, KL, Lane, SD, Paulus, MP (2010). Now or later? Striatum and insula activation to immediate versus delayed rewards. Journal of Neuroscience, Psychology and Economics 3, 1526.
Wolf, RC, Sambataro, F, Vasic, N, Schonfeldt-Lecuona, C, Ecker, D, Landwehrmeyer, B (2008). Altered frontostriatal coupling in pre-manifest Huntington's disease: effects of increasing cognitive load. European Journal of Neurology 15, 11801190.
Worsley, KJ, Marrett, S, Neelin, P, Vandal, AC, Friston, KJ, Evans, AC (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4, 5873.
Zack, M, Poulos, CX (2009). Effects of the atypical stimulant modafinil on a brief gambling episode in pathological gamblers with high vs. low impulsivity. Journal of Psychopharmacology 23, 660671.
Zago, L, Pesenti, M, Mellet, E, Crivello, F, Mazoyer, B, Tzourio-Mazoyer, N (2001). Neural correlates of simple and complex mental calculation. NeuroImage 13, 314327.

Keywords

Type Description Title
WORD
Supplementary materials

Schmaal Supplementary Material
Supplementary Material

 Word (578 KB)
578 KB

Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients

  • L. Schmaal (a1) (a2), A. E. Goudriaan (a1) (a3), L. Joos (a4), G. Dom (a4) (a5), T. Pattij (a6), W. van den Brink (a1) and D. J. Veltman (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed