Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T22:30:46.394Z Has data issue: false hasContentIssue false

Negative association between anterior insula activation and resilience during sustained attention: an fMRI twin study

Published online by Cambridge University Press:  11 January 2022

Arthur Montalto
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia School of Psychology, University of New South Wales, Sydney, NSW, Australia
Haeme R. P. Park
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia School of Psychology, University of New South Wales, Sydney, NSW, Australia
Leanne M. Williams
Affiliation:
Stanford School of Medicine, Stanford University, Stanford, CA, USA Mental Illness Research Education and Clinical Centers VISN21, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, 94304-151-Y, USA
Mayuresh S. Korgaonkar
Affiliation:
Brain Dynamics Centre, The Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
Miranda R. Chilver
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia School of Psychology, University of New South Wales, Sydney, NSW, Australia
Javad Jamshidi
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia School of Psychology, University of New South Wales, Sydney, NSW, Australia
Peter R. Schofield
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia School of Medical Science, University of New South Wales, Sydney, NSW, Australia
Justine M. Gatt*
Affiliation:
Neuroscience Research Australia, Sydney, NSW, Australia School of Psychology, University of New South Wales, Sydney, NSW, Australia
*
Author for correspondence: Justine Gatt, E-mail: j.gatt@neura.edu.au

Abstract

Background

While previous studies have suggested that higher levels of cognitive performance may be related to greater wellbeing and resilience, little is known about the associations between neural circuits engaged by cognitive tasks and wellbeing and resilience, and whether genetics or environment contribute to these associations.

Methods

The current study consisted of 253 monozygotic and dizygotic adult twins, including a subsample of 187 early-life trauma-exposed twins, with functional Magnetic Resonance Imaging data from the TWIN-E study. Wellbeing was measured using the COMPAS-W Wellbeing Scale while resilience was defined as a higher level of positive adaptation (higher levels of wellbeing) in the presence of trauma exposure. We probed both sustained attention and working memory processes using a Continuous Performance Task in the scanner.

Results

We found significant negative associations between resilience and activation in the bilateral anterior insula engaged during sustained attention. Multivariate twin modelling showed that the association between resilience and the left and right insula activation was mostly driven by common genetic factors, accounting for 71% and 87% of the total phenotypic correlation between these variables, respectively. There were no significant associations between wellbeing/resilience and neural activity engaged during working memory updating.

Conclusions

The findings suggest that greater resilience to trauma is associated with less activation of the anterior insula during a condition requiring sustained attention but not working memory updating. This possibly suggests a pattern of ‘neural efficiency’ (i.e. more efficient and/or attenuated activity) in people who may be more resilient to trauma.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, B. M., Jahanshad, N., Shukla, D., Glahn, D. C., Blangero, J., Reynolds, R. C., … Kochunov, P. (2017). Heritability estimates on resting-state fMRI data using ENIGMA analysis pipeline. In Biocomputing 2018 (pp. 307318). Singapore: WORLD SCIENTIFIC.Google Scholar
Alexander, R., & Gatt, J. M. (2019). Resilience. In Miu, AC, Homberg, JR, & Lesch, K-P (Eds.), (Ed.), Genes, brain, and emotions: Interdisciplinary and translational Perspectives (pp. 286303). Oxford: Oxford University Press.CrossRefGoogle Scholar
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839851. doi:10.1016/j.neuroimage.2005.02.018CrossRefGoogle ScholarPubMed
Barnes, J. C., & Boutwell, B. B. (2013). A demonstration of the generalizability of twin-based research on antisocial behavior. Behavior Genetics, 43(2), 120131. doi:10.1007/s10519-012-9580-8CrossRefGoogle ScholarPubMed
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 48. doi:10.18637/jss.v067.i01CrossRefGoogle Scholar
Berridge, K. C., & Kringelbach, M. L. (2011). Building a neuroscience of pleasure and well-being. Psychology of Well-Being, 1(1), 13. doi:10.1186/2211-1522-1-3CrossRefGoogle ScholarPubMed
Billeke, P., Ossandon, T., Perrone-Bertolotti, M., Kahane, P., Bastin, J., Jerbi, K., … Fuentealba, P. (2020). Human anterior insula encodes performance feedback and relays prediction error to the medial prefrontal cortex. Cerebral Cortex, 30(7), 40114025. doi:10.1093/cercor/bhaa017CrossRefGoogle ScholarPubMed
Blokland, G. A. M., McMahon, K. L., Hoffman, J., Zhu, G., Meredith, M., Martin, N. G., … Wright, M. J. (2008). Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biological Psychology, 79(1), 7079. doi:10.1016/j.biopsycho.2008.03.006CrossRefGoogle ScholarPubMed
Blokland, G. A. M., McMahon, K. L., Thompson, P. M., Martin, N. G., de Zubicaray, G. I., & Wright, M. J. (2011). Heritability of working memory brain activation. The Journal of Neuroscience, 31(30), 1088210890. doi:10.1523/jneurosci.5334-10.2011CrossRefGoogle ScholarPubMed
Boomsma, D., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3(11), 872882. doi:10.1038/nrg932CrossRefGoogle ScholarPubMed
Breukelaar, I., Williams, L. M., Antees, C., Grieve, S. M., Foster, S. L., Gomes, L., & Korgaonkar, M. S. (2018). Cognitive ability is associated with changes in the functional organization of the cognitive control brain network. Human Brain Mapping, 39(12), 50285038. doi:10.1002/hbm.24342CrossRefGoogle Scholar
Cheng, P., Park, H. R. P., & Gatt, J. M. (2021). Approach coping mitigates distress of COVID-19 isolation for young men with low well-being in a sample of 1749 youth from Australia and the USA. Frontiers in Psychiatry, 12(523), 234925. doi:10.3389/fpsyt.2021.634925.CrossRefGoogle Scholar
Cheverud, J. M. (2001). 18 – The genetic architecture of pleiotropic relations and differential epistasis. In Wagner, G. P. (Ed.), The character concept in evolutionary biology (pp. 411433). San Diego: Academic Press.CrossRefGoogle Scholar
Chilver, M. R., & Gatt, J. M. (2021). Six-week online multi-component positive psychology intervention improves subjective wellbeing in young adults. Journal of Happiness Studies, 122. doi:10.1007/s10902-021-00449-3.Google ScholarPubMed
Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. doi:10.1038/nrn2555CrossRefGoogle Scholar
Crawford, J. R., & Henry, J. D. (2003). The depression anxiety stress scales (DASS): Normative data and latent structure in a large non-clinical sample. The British Journal of Clinical Psychology, 42(Pt 2), 111131. doi:10.1348/014466503321903544CrossRefGoogle Scholar
Davis, J. C., Bryan, S., Li, L. C., Best, J. R., Hsu, C. L., Gomez, C., … Liu-Ambrose, T. (2015). Mobility and cognition are associated with wellbeing and health-related quality of life among older adults: A cross-sectional analysis of the Vancouver falls prevention cohort. BMC Geriatrics, 15(1), 75. doi:10.1186/s12877-015-0076-2CrossRefGoogle ScholarPubMed
Deng, M., Pan, Y., Zhou, L., Chen, X., Liu, C., Huang, X., … Rosenheck, R. (2018). Resilience and cognitive function in patients with schizophrenia and bipolar disorder, and healthy controls. Frontiers in psychiatry, 9, 279279. doi:10.3389/fpsyt.2018.00279CrossRefGoogle ScholarPubMed
Dunst, B., Benedek, M., Jauk, E., Bergner, S., Koschutnig, K., Sommer, M., … Neubauer, A. C. (2014). Neural efficiency as a function of task demands. Intelligence, 42(100), 2230. doi:10.1016/j.intell.2013.09.005CrossRefGoogle ScholarPubMed
Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., … Hariri, A. R. (2020). What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychological Science, 31(7), 792806. doi:10.1177/0956797620916786CrossRefGoogle ScholarPubMed
Evans, D. M., & Martin, N. G. (2000). The validity of twin studies. GeneScreen, 1(2), 7779. doi:https://doi.org/10.1046/j.1466-9218.2000.00027.x.CrossRefGoogle Scholar
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4 ed.). Harlow, Essex, UK: Longmans Green.Google Scholar
Feder, A., Nestler, E. J., & Charney, D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews. Neuroscience, 10(6), 446457. doi:10.1038/nrn2649CrossRefGoogle ScholarPubMed
Felson, J. (2014). What can we learn from twin studies? A comprehensive evaluation of the equal environments assumption. Social Science Research, 43, 184199. doi:10.1016/j.ssresearch.2013.10.004CrossRefGoogle ScholarPubMed
Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-related fMRI: Characterizing differential responses. NeuroImage, 7(1), 3040. doi:10.1006/nimg.1997.0306CrossRefGoogle ScholarPubMed
Gale, C. R., Cooper, R., Craig, L., Elliott, J., Kuh, D., Richards, M., … Deary, I. J. (2012). Cognitive function in childhood and lifetime cognitive change in relation to mental wellbeing in four cohorts of older people. PLoS One, 7(9), e44860. doi:10.1371/journal.pone.0044860CrossRefGoogle ScholarPubMed
Gatt, J. M., Burton, K. L., Schofield, P. R., Bryant, R. A., & Williams, L. M. (2014). The heritability of mental health and wellbeing defined using COMPAS-W, a new composite measure of wellbeing. Psychiatry Research, 219(1), 204213. doi:10.1016/j.psychres.2014.04.033CrossRefGoogle ScholarPubMed
Gatt, J. M., Burton, K. L. O., Routledge, K. M., Grasby, K. L., Korgaonkar, M. S., Grieve, S. M., … Williams, L. M. (2018). A negative association between brainstem pontine grey-matter volume, well-being and resilience in healthy twins. Journal of Psychiatry & Neuroscience, 43(5), 170125. doi:10.1503/jpn.170125CrossRefGoogle ScholarPubMed
Gatt, J. M., Korgaonkar, M. S., Schofield, P. R., Harris, A., Clark, C. R., Oakley, K. L., … Williams, L. M. (2012). The TWIN-E project in emotional wellbeing: Study protocol and preliminary heritability results across four MRI and DTI measures. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 15(3), 419441. doi:10.1017/thg.2012.12CrossRefGoogle ScholarPubMed
Gilbertson, M. W., Paulus, L. A., Williston, S. K., Gurvits, T. V., Lasko, N. B., Pitman, R. K., & Orr, S. P. (2006). Neurocognitive function in monozygotic twins discordant for combat exposure: Relationship to posttraumatic stress disorder. Journal of Abnormal Psychology, 115(3), 484495. doi:10.1037/0021-843x.115.3.484CrossRefGoogle ScholarPubMed
Glahn, D. C., Winkler, A. M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M. A., … Blangero, J. (2010). Genetic control over the resting brain. Proceedings of the National Academy of Sciences, 107(3), 12231228. doi:10.1073/pnas.0909969107CrossRefGoogle ScholarPubMed
Goldstein-Piekarski, A. N., Ball, T. M., Samara, Z., Staveland, B. R., Keller, A. S., Fleming, S. L., … Williams, L. M. (2021). Mapping neural circuit biotypes to symptoms and behavioral dimensions of depression and anxiety. Biological Psychiatry. doi:https://doi.org/10.1016/j.biopsych.2021.06.024.Google ScholarPubMed
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., … Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199217. doi:https://doi.org/10.1016/0160-2896(88)90016-5.CrossRefGoogle Scholar
Hofgaard, L. S., Nes, R. B., & Røysamb, E. (2021). Introducing two types of psychological resilience with partly unique genetic and environmental sources. Scientific Reports, 11(1), 8624. doi:10.1038/s41598-021-87581-5CrossRefGoogle ScholarPubMed
Holiga, Š., Sambataro, F., Luzy, C., Greig, G., Sarkar, N., Renken, R. J., … Dukart, J. (2018). Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. PLoS One, 13(11), e0206583e0206583. doi:10.1371/journal.pone.0206583CrossRefGoogle ScholarPubMed
Jansen, A. G., Mous, S. E., White, T., Posthuma, D., & Polderman, T. J. C. (2015). What twin studies tell us about the heritability of brain development, morphology, and function: A review. Neuropsychology Review, 25(1), 2746. doi:10.1007/s11065-015-9278-9CrossRefGoogle ScholarPubMed
Jeong, H., Chung, Y.-A., Ma, J., Kim, J., Hong, G., Oh, J. K., … Lyoo, I. K. (2019). Diverging roles of the anterior insula in trauma-exposed individuals vulnerable or resilient to posttraumatic stress disorder. Scientific Reports, 9(1), 15539. doi:10.1038/s41598-019-51727-3CrossRefGoogle ScholarPubMed
Keller, A. S., Ball, T. M., & Williams, L. M. (2020). Deep phenotyping of attention impairments and the ‘Inattention biotype’ in Major depressive disorder. Psychological Medicine, 50(13), 22032212. doi:10.1017/s003329171900229CrossRefGoogle ScholarPubMed
Keller, M. C., Medland, S. E., Duncan, L. E., Hatemi, P. K., Neale, M. C., Maes, H. M., & Eaves, L. J. (2009). Modeling extended twin family data I: Description of the cascade model. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 12(1), 818. doi:10.1375/twin.12.1.8CrossRefGoogle ScholarPubMed
Killgore, W. D., & Yurgelun-Todd, D. A. (2007). Neural correlates of emotional intelligence in adolescent children. Cognitive Affective & Behavioral Neuroscience, 7(2), 140151. doi:10.3758/cabn.7.2.140CrossRefGoogle ScholarPubMed
Kim-Cohen, J., Moffitt, T. E., Caspi, A., & Taylor, A. (2004). Genetic and environmental processes in young children's resilience and vulnerability to socioeconomic deprivation. Child Development, 75(3), 651668. doi:https://doi.org/10.1111/j.1467-8624.2004.00699.x.CrossRefGoogle ScholarPubMed
Kirkpatrick, R. M., McGue, M., & Iacono, W. G. (2015). Replication of a gene-environment interaction Via multimodel inference: Additive-genetic variance in adolescents’ general cognitive ability increases with family-of-origin socioeconomic status. Behavior Genetics, 45(2), 200214. doi:10.1007/s10519-014-9698-yCrossRefGoogle ScholarPubMed
Kong, F., Wang, X., Hu, S., & Liu, J. (2015). Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. NeuroImage, 123, 165172. doi:https://doi.org/10.1016/j.neuroimage.2015.08.020.CrossRefGoogle Scholar
Korgaonkar, M. S., Grieve, S. M., Etkin, A., Koslow, S. H., & Williams, L. M. (2013). Using standardized fMRI protocols to identify patterns of prefrontal circuit dysregulation that are common and specific to cognitive and emotional tasks in major depressive disorder: First wave results from the iSPOT-D study. Neuropsychopharmacology, 38(5), 863871. doi:10.1038/npp.2012.252CrossRefGoogle ScholarPubMed
Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15(7), 10281038. doi:10.1162/089892903770007416CrossRefGoogle ScholarPubMed
Lee, Y.-C., & Chao, H.-F. (2012). The role of active inhibitory control in psychological well-being and mindfulness. Personality and Individual Differences, 53(5), 618621. doi:https://doi.org/10.1016/j.paid.2012.05.001.CrossRefGoogle Scholar
Llewellyn, D. J., Lang, I. A., Langa, K. M., & Huppert, F. A. (2008). Cognitive function and psychological well-being: Findings from a population-based cohort. Age and Ageing, 37(6), 685689. doi:10.1093/ageing/afn194CrossRefGoogle ScholarPubMed
Lovibond, S. H., & Lovibond, P. F. (1995). Manual for the Depression Anxiety Stress Scales. Sydney: Psychology Foundation.Google Scholar
Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 14941502. doi:10.3758/s13428-016-0809-yCrossRefGoogle ScholarPubMed
Mary, A., Dayan, J., Leone, G., Postel, C., Fraisse, F., Malle, C., … Gagnepain, P. (2020). Resilience after trauma: The role of memory suppression. Science, 367(6479), eaay8477. doi:10.1126/science.aay8477CrossRefGoogle ScholarPubMed
Matthews, S. C., Simmons, A. N., Strigo, I., Jang, K., Stein, M. B., & Paulus, M. P. (2007). Heritability of anterior cingulate response to conflict: An fMRI study in female twins. NeuroImage, 38(1), 223227. doi:10.1016/j.neuroimage.2007.07.015CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5-6), 655667. doi:10.1007/s00429-010-0262-0CrossRefGoogle ScholarPubMed
Neale, M., & Maes, H. (1998). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Publishers B.V.Google Scholar
Nelson, S. M., Dosenbach, N. U. F., Cohen, A. L., Wheeler, M. E., Schlaggar, B. L., & Petersen, S. E. (2010). Role of the anterior insula in task-level control and focal attention. Brain Structure and Function, 214(5), 669680. doi:10.1007/s00429-010-0260-2CrossRefGoogle ScholarPubMed
Nilsen, S. T., Bergsjø, P., & Nome, S. (1984). Male twins at birth and 18 years later. British Journal of Obstetrics and Gynaecology, 91(2), 122127. doi:10.1111/j.1471-0528.1984.tb05894.xCrossRefGoogle ScholarPubMed
Nussbaumer, D., Grabner, R. H., & Stern, E. (2015). Neural efficiency in working memory tasks: The impact of task demand. Intelligence, 50, 196208. doi:https://doi.org/10.1016/j.intell.2015.04.004.CrossRefGoogle Scholar
Parsons, S., Kruijt, A.-W., & Fox, E. (2016). A cognitive model of psychological resilience. Journal of Experimental Psychopathology, 7(3), 296310. doi:10.5127/jep.053415CrossRefGoogle Scholar
Paul, R. H., Gunstad, J., Cooper, N., Williams, L. M., Clark, C. R., Cohen, R. A., … Gordon, E. (2007). Cross-cultural assessment of neuropsychological performance and electrical brain function measures: Additional validation of an international brain database. The International Journal of Neuroscience, 117(4), 549568. doi:10.1080/00207450600773665CrossRefGoogle ScholarPubMed
Paul, R. H., Lawrence, J., Williams, L. M., Richard, C. C., Cooper, N., & Gordon, E. (2005). Preliminary validity of “integneuro”: A new computerized battery of neurocognitive tests. The International Journal of Neuroscience, 115(11), 15491567. doi:10.1080/00207450590957890CrossRefGoogle ScholarPubMed
Posthuma, D. (2009). Multivariate genetic analysis. In Kim, Y.-K. (Ed.), Handbook of behavior genetics (pp. 4759). New York, NY: Springer New York.CrossRefGoogle Scholar
Posthuma, D., De Geus, E. J., Bleichrodt, N., & Boomsma, D. I. (2000). Twin-singleton differences in intelligence? Twin Research, 3(2), 8387. doi:10.1375/136905200320565535CrossRefGoogle ScholarPubMed
Riccio, C. A., Reynolds, C. R., Lowe, P., & Moore, J. J. (2002). The continuous performance test: A window on the neural substrates for attention? Archives of Clinical Neuropsychology, 17(3), 235272.CrossRefGoogle Scholar
Richardson, K., & Norgate, S. (2005). The equal environments assumption of classical twin studies may not hold. The British Journal of Educational Psychology, 75(Pt 3), 339350. doi:10.1348/000709904x24690CrossRefGoogle Scholar
Ronalds, G. A., De Stavola, B. L., & Leon, D. A. (2005). The cognitive cost of being a twin: Evidence from comparisons within families in the Aberdeen children of the 1950s cohort study. BMJ (Clinical Research ed.), 331(7528), 13061306. doi:10.1136/bmj.38633.594387.3ACrossRefGoogle ScholarPubMed
Routledge, K. M., Burton, K. L. O., Williams, L. M., Harris, A., Schofield, P. R., Clark, C. R., & Gatt, J. M. (2016). Shared versus distinct genetic contributions of mental wellbeing with depression and anxiety symptoms in healthy twins. Psychiatry Research, 244, 6570. doi:https://doi.org/10.1016/j.psychres.2016.07.016.CrossRefGoogle ScholarPubMed
Routledge, K. M., Burton, K. L. O., Williams, L. M., Harris, A., Schofield, P. R., Clark, C. R., & Gatt, J. M. (2017). The shared and unique genetic relationship between mental well-being, depression and anxiety symptoms and cognitive function in healthy twins. Cognition and Emotion, 31(7), 14651479. doi:10.1080/02699931.2016.1232242CrossRefGoogle ScholarPubMed
Sahu, M., & Prasuna, J. G. (2016). Twin studies: A unique epidemiological tool. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 41(3), 177182. doi:10.4103/0970-0218.183593CrossRefGoogle ScholarPubMed
Sanders, B., & Becker-Lausen, E. (1995). The measurement of psychological maltreatment: Early data on the child abuse and trauma scale. Child Abuse & Neglect, 19(3), 315323. doi:10.1016/s0145-2134(94)00131-6CrossRefGoogle ScholarPubMed
Sarrionandia, A., Ramos-Díaz, E., & Fernández-Lasarte, O. (2018). Resilience as a mediator of emotional intelligence and perceived stress: A cross-country study. Frontiers in Psychology, 9(2653). doi:10.3389/fpsyg.2018.02653CrossRefGoogle Scholar
Scult, M. A., Knodt, A. R., Radtke, S. R., Brigidi, B. D., & Hariri, A. R. (2017). Prefrontal executive control rescues risk for anxiety associated with high threat and low reward brain function. Cerebral Cortex, 29(1), 7076. doi:10.1093/cercor/bhx304CrossRefGoogle Scholar
Silveira, S., Shah, R., Nooner, K. B., Nagel, B. J., Tapert, S. F., de Bellis, M. D., & Mishra, J. (2020). Impact of childhood trauma on executive function in adolescence—mediating functional brain networks and prediction of high-risk drinking. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(5), 499509. doi:https://doi.org/10.1016/j.bpsc.2020.01.011.Google ScholarPubMed
Silverstein, S. M., Berten, S., Olson, P., Paul, R., Willams, L. M., Cooper, N., & Gordon, E. (2007). Development and validation of a world-wide-web-based neurocognitive assessment battery: WebNeuro. Behavior Research Methods, 39(4), 940949. doi:10.3758/bf03192989CrossRefGoogle ScholarPubMed
Simeon, D., Yehuda, R., Cunill, R., Knutelska, M., Putnam, F. W., & Smith, L. M. (2007). Factors associated with resilience in healthy adults. Psychoneuroendocrinology, 32(8), 11491152. doi:https://doi.org/10.1016/j.psyneuen.2007.08.005.CrossRefGoogle ScholarPubMed
Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463466. doi:10.1097/COH.0b013e32833ed177CrossRefGoogle ScholarPubMed
Trautwein, F.-M., Singer, T., & Kanske, P. (2016). Stimulus-driven reorienting impairs executive control of attention: Evidence for a common bottleneck in anterior Insula. Cerebral Cortex, 26(11), 41364147. doi:10.1093/cercor/bhw225CrossRefGoogle ScholarPubMed
van der Werff, S. J. A., van den Berg, S. M., Pannekoek, J. N., Elzinga, B. M., & van der Wee, N. J. A. (2013). Neuroimaging resilience to stress: A review. Frontiers in Behavioral Neuroscience, 7, 3939. doi:10.3389/fnbeh.2013.00039CrossRefGoogle ScholarPubMed
van Rooij, S. J. H., Stevens, J. S., Ely, T. D., Hinrichs, R., Michopoulos, V., Winters, S. J., … Jovanovic, T. (2018). The role of the hippocampus in predicting future posttraumatic stress disorder symptoms in recently traumatized civilians. Biological Psychiatry, 84(2), 106115. doi:10.1016/j.biopsych.2017.09.005CrossRefGoogle ScholarPubMed
Verweij, K. J., Mosing, M. A., Zietsch, B. P., & Medland, S. E. (2012). Estimating heritability from twin studies. Methods in Molecular Biology, 850, 151170. doi:10.1007/978-1-61779-555-8_9CrossRefGoogle ScholarPubMed
Vinkhuyzen, A. A. E., van der Sluis, S., Maes, H. H. M., & Posthuma, D. (2012). Reconsidering the heritability of intelligence in adulthood: Taking assortative mating and cultural transmission into account. Behavior Genetics, 42(2), 187198. doi:10.1007/s10519-011-9507-9CrossRefGoogle ScholarPubMed
Waugh, C. E., Wager, T. D., Fredrickson, B. L., Noll, D. C., & Taylor, S. F. (2008). The neural correlates of trait resilience when anticipating and recovering from threat. Social Cognitive and Affective Neuroscience, 3(4), 322332. doi:10.1093/scan/nsn024CrossRefGoogle ScholarPubMed
Wiech, K., Lin, C.-S., Brodersen, K. H., Bingel, U., Ploner, M., & Tracey, I. (2010). Anterior insula integrates information about salience into perceptual decisions about pain. The Journal of Neuroscience, 30(48), 16324. doi:10.1523/JNEUROSCI.2087-10.2010CrossRefGoogle ScholarPubMed
Williams, L. M. (2016). Precision psychiatry: A neural circuit taxonomy for depression and anxiety. The Lancet. Psychiatry, 3(5), 472480. doi:10.1016/s2215-0366(15)00579-9CrossRefGoogle ScholarPubMed
Williams, L. M., Simms, E., Clark, C. R., Paul, R. H., Rowe, D., & Gordon, E. (2005). The test-retest reliability of a standardized neurocognitive and neurophysiological test battery: “neuromarker”. The International Journal of Neuroscience, 115(12), 16051630. doi:10.1080/00207450590958475CrossRefGoogle ScholarPubMed
Wingo, A. P., Fani, N., Bradley, B., & Ressler, K. J. (2010). Psychological resilience and neurocognitive performance in a traumatized community sample. Depression and Anxiety, 27(8), 768774. doi:10.1002/da.20675CrossRefGoogle Scholar
Wolf, E. J., Miller, M. W., Sullivan, D. R., Amstadter, A. B., Mitchell, K. S., Goldberg, J., & Magruder, K. M. (2018). A classical twin study of PTSD symptoms and resilience: Evidence for a single spectrum of vulnerability to traumatic stress. Depression and Anxiety, 35(2), 132139. doi:https://doi.org/10.1002/da.22712.CrossRefGoogle ScholarPubMed
Xu, A., Larsen, B., Baller, E. B., Scott, J. C., Sharma, V., Adebimpe, A., … Satterthwaite, T. D. (2020). Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. Neuroscience & Biobehavioral Reviews, 112, 300323. doi:https://doi.org/10.1016/j.neubiorev.2020.01.004.CrossRefGoogle ScholarPubMed
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665670. doi:10.1038/nmeth.1635CrossRefGoogle ScholarPubMed
Supplementary material: File

Montalto et al. supplementary material

Montalto et al. supplementary material

Download Montalto et al. supplementary material(File)
File 255 KB