Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T23:55:48.075Z Has data issue: false hasContentIssue false

Iron deficiency and internalizing symptom severity in unmedicated adolescents: a pilot study

Published online by Cambridge University Press:  16 December 2021

Malak Abbas
Affiliation:
The Rockefeller University, New York, NY 10065, USA
Kellen Gandy
Affiliation:
St. Jude Children's Research Hospital, Houston, Texas 77027, USA
Ramiro Salas
Affiliation:
Baylor College of Medicine – Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, Texas 77030, USA
Sridevi Devaraj
Affiliation:
Baylor College of Medicine, Houston, Texas 77030, USA
Chadi A. Calarge*
Affiliation:
Baylor College of Medicine – The Menninger Department of Psychiatry and Behavioral Sciences, 1102 Bates Ave, Suite 790, Houston, Texas 77030, USA
*
Author for correspondence: Chadi A. Calarge, E-mail: chadi.calarge@bcm.edu

Abstract

Background

Iron plays a key role in a broad set of metabolic processes. Iron deficiency is the most common nutritional deficiency in the world, but its neuropsychiatric implications in adolescents have not been examined.

Methods

Twelve- to 17-year-old unmedicated females with major depressive or anxiety disorders or with no psychopathology underwent a comprehensive psychiatric assessment for this pilot study. A T1-weighted magnetic resonance imaging scan was obtained, segmented using Freesurfer. Serum ferritin concentration (sF) was measured. Correlational analyses examined the association between body iron stores, psychiatric symptom severity, and basal ganglia volumes, accounting for confounding variables.

Results

Forty females were enrolled, 73% having a major depressive and/or anxiety disorder, 35% with sF < 15 ng/mL, and 50% with sF < 20 ng/mL. Serum ferritin was inversely correlated with both anxiety and depressive symptom severity (r = −0.34, p < 0.04 and r = −0.30, p < 0.06, respectively). Participants with sF < 15 ng/mL exhibited more severe depressive and anxiety symptoms as did those with sF < 20 ng/mL. Moreover, after adjusting for age and total intracranial volume, sF was inversely associated with left caudate (Spearman's r = −0.46, p < 0.04), left putamen (r = −0.58, p < 0.005), and right putamen (r = −0.53, p < 0.01) volume.

Conclusions

Brain iron may become depleted at a sF concentration higher than the established threshold to diagnose iron deficiency (i.e. 15 ng/mL), potentially disrupting brain maturation and contributing to the emergence of internalizing disorders in adolescents.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Anderson, J. G., Fordahl, S. C., Cooney, P. T., Weaver, T. L., Colyer, C. L., & Erikson, K. M. (2009). Extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure. Brain Research, 1281, 114. doi: 10.1016/j.brainres.2009.05.050CrossRefGoogle ScholarPubMed
Ballin, A., Berar, M., Rubinstein, U., Kleter, Y., Hershkovitz, A., & Meytes, D. (1992). Iron state in female adolescents. American Journal of Diseases of Children, 146(7), 803805. doi: 10.1001/archpedi.1992.02160190035015Google Scholar
Barks, A., Hall, A. M., Tran, P. V., & Georgieff, M. K. (2019). Iron as a model nutrient for understanding the nutritional origins of neuropsychiatric disease. Pediatric Research, 85(2), 176182. doi: 10.1038/s41390-018-0204-8CrossRefGoogle Scholar
Bastian, T. W., von Hohenberg, W. C., Georgieff, M. K., & Lanier, L. M. (2019). Chronic energy depletion due to iron deficiency impairs dendritic mitochondrial motility during hippocampal neuron development. Journal of Neuroscience, 39(5), 802813. doi: 10.1523/JNEUROSCI.1504-18.2018CrossRefGoogle ScholarPubMed
Baumgartner, J., Smuts, C. M., Malan, L., Arnold, M., Yee, B. K., Bianco, L. E., … Zimmermann, M. B. (2012a). Combined deficiency of iron and (n-3) fatty acids in male rats disrupts brain monoamine metabolism and produces greater memory deficits than iron deficiency or (n-3) fatty acid deficiency alone. Journal of Nutrition, 142(8), 14631471. doi: 10.3945/jn.111.156281CrossRefGoogle ScholarPubMed
Baumgartner, J., Smuts, C. M., Malan, L., Arnold, M., Yee, B. K., Bianco, L. E., … Zimmermann, M. B. (2012b). In male rats with concurrent iron and (n-3) fatty acid deficiency, provision of either iron or (n-3) fatty acids alone alters monoamine metabolism and exacerbates the cognitive deficits associated with combined deficiency. Journal of Nutrition, 142(8), 14721478. doi: 10.3945/jn.111.156299CrossRefGoogle ScholarPubMed
Baumgartner, J., Smuts, C. M., & Zimmermann, M. B. (2014). Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision. Lipids in Health and Disease, 13, 97. doi: 10.1186/1476-511X-13-97CrossRefGoogle ScholarPubMed
Beard, J. L., Chen, Q., Connor, J., & Jones, B. C. (1994). Altered monamine metabolism in caudate-putamen of iron-deficient rats. Pharmacology, Biochemistry and Behavior, 48(3), 621624.CrossRefGoogle ScholarPubMed
Beard, J. L., & Connor, J. R. (2003). Iron status and neural functioning. Annual Review Nutrition, 23, 4158. doi: 10.1146/annurev.nutr.23.020102.075739020102.075739CrossRefGoogle ScholarPubMed
Beard, J. L., Erikson, K. M., & Jones, B. C. (2002). Neurobehavioral analysis of developmental iron deficiency in rats. Behavioural Brain Research, 134(1-2), 517524.CrossRefGoogle ScholarPubMed
Beard, J. L., Hendricks, M. K., Perez, E. M., Murray-Kolb, L. E., Berg, A., Vernon-Feagans, L., … Tomlinson, M. (2005). Maternal iron deficiency anemia affects postpartum emotions and cognition. Journal of Nutrition, 135(2), 267272. doi: 10.1093/jn/135.2.267CrossRefGoogle ScholarPubMed
Belza, A., Ersboll, A. K., Henriksen, M., Thilsted, S. H., & Tetens, I. (2005). Day-to-day variation in iron-status measures in young iron-deplete women. British Journal of Nutrition, 94(4), 551556. doi: 10.1079/bjn20051461CrossRefGoogle ScholarPubMed
Birmaher, B., Brent, D. A., Chiappetta, L., Bridge, J., Monga, S., & Baugher, M. (1999). Psychometric properties of the screen for child anxiety related emotional disorders (SCARED): A replication study. Journal of the American Academy of Child and Adolescent Psychiatry, 38(10), 12301236. doi: 10.1097/00004583-199910000-00011CrossRefGoogle ScholarPubMed
Birmaher, B., Khetarpal, S., Brent, D., Cully, M., Balach, L., Kaufman, J., & Neer, S. M. (1997). The screen for child anxiety related emotional disorders (SCARED): Scale construction and psychometric characteristics. Journal of the American Academy of Child and Adolescent Psychiatry, 36(4), 545553. doi: 10.1097/00004583-199704000-00018CrossRefGoogle ScholarPubMed
Bourre, J. M., Pascal, G., Durand, G., Masson, M., Dumont, O., & Piciotti, M. (1984). Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. Journal of Neurochemistry, 43(2), 342348. doi: 10.1111/j.1471-4159.1984.tb00906.xCrossRefGoogle ScholarPubMed
Bruner, A. B., Joffe, A., Duggan, A. K., Casella, J. F., & Brandt, J. (1996). Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet (London, England), 348(9033), 992996. doi: 10.1016/S0140-6736(96)02341-0CrossRefGoogle ScholarPubMed
Burhans, M. S., Dailey, C., Beard, Z., Wiesinger, J., Murray-Kolb, L., Jones, B. C., & Beard, J. L. (2005). Iron deficiency: Differential effects on monoamine transporters. Nutritional Neuroscience, 8(1), 3138.CrossRefGoogle ScholarPubMed
Calarge, C. A., Acion, L., Kuperman, S., Tansey, M., & Schlechte, J. A. (2009). Weight gain and metabolic abnormalities during extended risperidone treatment in children and adolescents. Journal of Child and Adolescent Psychopharmacology, 19(2), 101109. doi: 10.1089/cap.2008.007CrossRefGoogle ScholarPubMed
Calarge, C. A., Devaraj, S., & Shulman, R. J. (2019). Gut permeability and depressive symptom severity in unmedicated adolescents. Journal of Affective Disorders, 246, 586594. doi: 10.1016/j.jad.2018.12.077CrossRefGoogle ScholarPubMed
Calarge, C. A., Gandy, K., Barba Villalobos, G., Nguyen, J., Kim, S. Y., & Maletic-Savatic, M. (2017). In-vivo measurement of a neurogenic signal and pattern separation in adolescent depression. Paper presented at the American College of Neuropsychopharmacology Annual Meeting, Palm Springs, CA.Google Scholar
Calarge, C. A., Mills, J. A., Ziegler, E. E., & Schlechte, J. A. (2018). Calcium and vitamin D supplementation in boys with risperidone-induced hyperprolactinemia: A randomized, placebo-controlled pilot study. Journal of Child and Adolescent Psychopharmacology, 28(2), 145150. doi: 10.1089/cap.2017.0104CrossRefGoogle ScholarPubMed
Cammer, W. (1984a). Carbonic anhydrase in oligodendrocytes and myelin in the central nervous system. Annals of the New York Academy of Sciences 429, 494497. https://doi.org/10.1111/j.1749-6632.1984.tb12376.x.CrossRefGoogle ScholarPubMed
Cammer, W. (1984b). Oligodendrocyte associated enzymes. In Norton, W. T. (Ed.), Oligodendroglia (pp. 199232). New York: Plenum Press.CrossRefGoogle Scholar
Carlson, E. S., Stead, J. D., Neal, C. R., Petryk, A., & Georgieff, M. K. (2007). Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus, 17(8), 679691. doi: 10.1002/hipo.20307CrossRefGoogle ScholarPubMed
Carpenter, K. L. H., Li, W., Wei, H., Wu, B., Xiao, X., Liu, C., … Egger, H. L. (2016). Magnetic susceptibility of brain iron is associated with childhood spatial IQ. Neuroimage, 132, 167174. doi: 10.1016/j.neuroimage.2016.02.028CrossRefGoogle ScholarPubMed
CDC, Centers for Disease Control and Prevention. (2002). Iron deficiency — United States, 1999–2000. Morbidity and Mortality Weekly Report, 51, 897899. http://www.cdc.gov/MMWR/PDF/wk/mm5140.pdf.Google Scholar
CDC, Centers for Disease Control and Prevention. (2014). Trace elements. Second National Report on Biochemical Indicators of Diet and Nutrition in the U.S. Population 2012. Retrieved from https://www.cdc.gov/nutritionreport/summary_2012.html.Google Scholar
Chang, L., Cloak, C., Patterson, K., Grob, C., Miller, E. N., & Ernst, T. (2005). Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biological Psychiatry, 57(9), 967974. doi: 10.1016/j.biopsych.2005.01.039CrossRefGoogle ScholarPubMed
Chen, M. H., Su, T. P., Chen, Y. S., Hsu, J. W., Huang, K. L., Chang, W. H., … Bai, Y. M. (2013). Association between psychiatric disorders and iron deficiency anemia among children and adolescents: A nationwide population-based study. BMC Psychiatry, 13, 161. doi: 10.1186/1471-244X-13-161CrossRefGoogle ScholarPubMed
Chmielewska, A., Dziechciarz, P., Gieruszczak-Bialek, D., Horvath, A., Piescik-Lech, M., Ruszczynski, M., … Szajewska, H. (2019). Effects of prenatal and/or postnatal supplementation with iron, PUFA or folic acid on neurodevelopment: Update. British Journal of Nutrition, 122(Suppl. 1), S10S15. doi: 10.1017/S0007114514004243CrossRefGoogle ScholarPubMed
Churchwell, J. C., Carey, P. D., Ferrett, H. L., Stein, D. J., & Yurgelun-Todd, D. A. (2012). Abnormal striatal circuitry and intensified novelty seeking among adolescents who abuse methamphetamine and cannabis. Developmental Neuroscience, 34(4), 310317. doi: 10.1159/000337724CrossRefGoogle ScholarPubMed
Coe, C. L., Lubach, G. R., Bianco, L., & Beard, J. L. (2009). A history of iron deficiency anemia during infancy alters brain monoamine activity later in juvenile monkeys. Developmental Psychobiology, 51(3), 301309. doi: 10.1002/dev.20365CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Routledge.Google Scholar
Connor, J. R., & Menzies, S. L. (1996). Relationship of iron to oligodendrocytes and myelination. Glia, 17(2), 8393. doi: 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-73.0.CO;2-7>CrossRefGoogle ScholarPubMed
Corson, P. W., Nopoulos, P., Miller, D. D., Arndt, S., & Andreasen, N. C. (1999). Change in basal ganglia volume over 2 years in patients with schizophrenia: Typical versus atypical neuroleptics. American Journal of Psychiatry, 156(8), 12001204. doi: 10.1176/ajp.156.8.1200CrossRefGoogle ScholarPubMed
Corwin, E. J., Murray-Kolb, L. E., & Beard, J. L. (2003). Low hemoglobin level is a risk factor for postpartum depression. Journal of Nutrition, 133(12), 41394142. doi: 10.1093/jn/133.12.4139CrossRefGoogle ScholarPubMed
D'Occhio, M. J., Fordyce, G., Whyte, T. R., Aspden, W. J., & Trigg, T. E. (2000). Reproductive responses of cattle to GnRH agonists. Animal Reproduction Science, 60–61, 433442. doi: 10.1016/s0378-4320(00)00078-6CrossRefGoogle ScholarPubMed
Doom, J. R., Richards, B., Caballero, G., Delva, J., Gahagan, S., & Lozoff, B. (2018). Infant iron deficiency and iron supplementation predict adolescent internalizing, externalizing, and social problems. Journal of Pediatrics, 195, 199205.e192. doi: 10.1016/j.jpeds.2017.12.008CrossRefGoogle ScholarPubMed
Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., … Liston, C. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 2838. doi: 10.1038/nm.4246CrossRefGoogle ScholarPubMed
Ennis, K. M., Dahl, L. V., Rao, R. B., & Georgieff, M. K. (2018). Reticulocyte hemoglobin content as an early predictive biomarker of brain iron deficiency. Pediatric Research, 84(5), 765769. doi: 10.1038/s41390-018-0178-6CrossRefGoogle ScholarPubMed
Erikson, K. M., Jones, B. C., & Beard, J. L. (2000). Iron deficiency alters dopamine transporter functioning in rat striatum. Journal of Nutrition, 130(11), 28312837.CrossRefGoogle ScholarPubMed
Erikson, K. M., Jones, B. C., Hess, E. J., Zhang, Q., & Beard, J. L. (2001). Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacology, Biochemistry and Behavior, 69(3–4), 409418. doi: S0091-3057(01)00563-9CrossRefGoogle ScholarPubMed
Ersche, K. D., Acosta-Cabronero, J., Jones, P. S., Ziauddeen, H., van Swelm, R. P., Laarakkers, C. M., … Williams, G. B. (2017). Disrupted iron regulation in the brain and periphery in cocaine addiction. Translational Psychiatry, 7(2), e1040. doi: 10.1038/tp.2016.271CrossRefGoogle ScholarPubMed
Ersche, K. D., Barnes, A., Jones, P. S., Morein-Zamir, S., Robbins, T. W., & Bullmore, E. T. (2011). Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain, 134(Pt 7), 20132024. doi: 10.1093/brain/awr138CrossRefGoogle ScholarPubMed
Ersche, K. D., Jones, P. S., Williams, G. B., Turton, A. J., Robbins, T. W., & Bullmore, E. T. (2012). Abnormal brain structure implicated in stimulant drug addiction. Science (New York, N.Y.), 335(6068), 601604. doi: 10.1126/science.1214463CrossRefGoogle ScholarPubMed
Faulstich, M. E., Carey, M. P., Ruggiero, L., Enyart, P., & Gresham, F. (1986). Assessment of depression in childhood and adolescence: An evaluation of the center for epidemiological studies depression scale for children (CES-DC). American Journal of Psychiatry, 143(8), 10241027. doi: 10.1176/ajp.143.8.1024Google Scholar
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355. doi: 10.1016/s0896-6273(02)00569-xCrossRefGoogle ScholarPubMed
Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23(Suppl. 1), S69S84. doi: 10.1016/j.neuroimage.2004.07.016CrossRefGoogle ScholarPubMed
Fordy, J., & Benton, D. (1994). Does low iron status influence psychological functioning? Journal of Human Nutrition and Dietetics, 7, 127133.CrossRefGoogle Scholar
Fretham, S. J., Carlson, E. S., Wobken, J., Tran, P. V., Petryk, A., & Georgieff, M. K. (2012). Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus, 22(8), 16911702. doi: 10.1002/hipo.22004CrossRefGoogle ScholarPubMed
Garcia-Casal, M. N., Pena-Rosas, J. P., Urrechaga, E., Escanero, J. F., Huo, J., Martinez, R. X., & Lopez-Perez, L. (2018). Performance and comparability of laboratory methods for measuring ferritin concentrations in human serum or plasma: A systematic review and meta-analysis. PLoS ONE, 13(5), e0196576. doi: 10.1371/journal.pone.0196576CrossRefGoogle ScholarPubMed
Georgieff, M. K. (2017). Iron assessment to protect the developing brain. American Journal of Clinical Nutrition, 106(Suppl. 6), 1588S1593S. doi: 10.3945/ajcn.117.155846CrossRefGoogle ScholarPubMed
Georgieff, M. K., Brunette, K. E., & Tran, P. V. (2015). Early life nutrition and neural plasticity. Development and Psychopathology, 27(2), 411423. doi: 10.1017/S0954579415000061CrossRefGoogle ScholarPubMed
Golub, M. S., Hogrefe, C. E., & Germann, S. L. (2007). Iron deprivation during fetal development changes the behavior of juvenile rhesus monkeys. Journal of Nutrition, 137(4), 979984. doi: 10.1093/jn/137.4.979CrossRefGoogle ScholarPubMed
Grantham-McGregor, S., & Ani, C. (2001). A review of studies on the effect of iron deficiency on cognitive development in children. The Journal of Nutrition, 131(2S-2), 649S666S; discussion 666S-668S.CrossRefGoogle ScholarPubMed
Groman, S. M., Morales, A. M., Lee, B., London, E. D., & Jentsch, J. D. (2013). Methamphetamine-induced increases in putamen gray matter associate with inhibitory control. Psychopharmacology, 229(3), 527538. doi: 10.1007/s00213-013-3159-9CrossRefGoogle ScholarPubMed
Guiang, S. F., 3rd, Georgieff, M. K., Lambert, D. J., Schmidt, R. L., & Widness, J. A. (1997). Intravenous iron supplementation effect on tissue iron and hemoproteins in chronically phlebotomized lambs. The American Journal of Physiology, 273(6 Pt 2), R2124R2131.Google ScholarPubMed
Gupta, P. M., Hamner, H. C., Suchdev, P. S., Flores-Ayala, R., & Mei, Z. (2017). Iron status of toddlers, nonpregnant females, and pregnant females in the United States. American Journal of Clinical Nutrition, 106(Suppl. 6), 1640S1646S. doi: 10.3945/ajcn.117.155978CrossRefGoogle ScholarPubMed
Haacke, E. M., Cheng, N. Y., House, M. J., Liu, Q., Neelavalli, J., Ogg, R. J., … Obenaus, A. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23(1), 125. doi: 10.1016/j.mri.2004.10.001CrossRefGoogle ScholarPubMed
Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3(1), 4151. doi: 10.1111/j.1471-4159.1958.tb12607.xCrossRefGoogle ScholarPubMed
Jacobsen, L. K., Giedd, J. N., Gottschalk, C., Kosten, T. R., & Krystal, J. H. (2001). Quantitative morphology of the caudate and putamen in patients with cocaine dependence. American Journal of Psychiatry, 158(3), 486489. doi: 10.1176/appi.ajp.158.3.486CrossRefGoogle ScholarPubMed
Jan, R. K., Lin, J. C., Miles, S. W., Kydd, R. R., & Russell, B. R. (2012). Striatal volume increases in active methamphetamine-dependent individuals and correlation with cognitive performance. Brain Sciences, 2(4), 553572. doi: 10.3390/brainsci2040553CrossRefGoogle ScholarPubMed
Janiri, D., Moser, D. A., Doucet, G. E., Luber, M. J., Rasgon, A., Lee, W. H., … Frangou, S. (2019). Shared neural phenotypes for mood and anxiety disorders: A meta-analysis of 226 task-related functional imaging studies. JAMA Psychiatry, 77(2), 172179. 10.1001/jamapsychiatry.2019.3351.CrossRefGoogle Scholar
Jellen, L. C., Lu, L., Wang, X., Unger, E. L., Earley, C. J., Allen, R. P., … Jones, B. C. (2013). Iron deficiency alters expression of dopamine-related genes in the ventral midbrain in mice. Neuroscience, 252, 1323. doi: 10.1016/j.neuroscience.2013.07.058CrossRefGoogle ScholarPubMed
Jernigan, T. L., Gamst, A. C., Archibald, S. L., Fennema-Notestine, C., Mindt, M. R., Marcotte, T. D., … Grant, I. (2005). Effects of methamphetamine dependence and HIV infection on cerebral morphology. American Journal of Psychiatry, 162(8), 14611472. doi: 10.1176/appi.ajp.162.8.1461CrossRefGoogle ScholarPubMed
Karl, J. P., Lieberman, H. R., Cable, S. J., Williams, K. W., Young, A. J., & McClung, J. P. (2010). Randomized, double-blind, placebo-controlled trial of an iron-fortified food product in female soldiers during military training: Relations between iron status, serum hepcidin, and inflammation. American Journal of Clinical Nutrition, 92(1), 93100. doi: 10.3945/ajcn.2010.29185CrossRefGoogle ScholarPubMed
Kennedy, B. C., Dimova, J. G., Siddappa, A. J., Tran, P. V., Gewirtz, J. C., & Georgieff, M. K. (2014). Prenatal choline supplementation ameliorates the long-term neurobehavioral effects of fetal-neonatal iron deficiency in rats. Journal of Nutrition, 144(11), 18581865. doi: 10.3945/jn.114.198739CrossRefGoogle ScholarPubMed
Kim, I., Yetley, E. A., & Calvo, M. S. (1993). Variations in iron-status measures during the menstrual cycle. American Journal of Clinical Nutrition, 58(5), 705709. doi: 10.1093/ajcn/58.5.705CrossRefGoogle ScholarPubMed
Konofal, E., Lecendreux, M., Deron, J., Marchand, M., Cortese, S., Zaim, M., … Arnulf, I. (2008). Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatric Neurology, 38(1), 2026. doi: S0887-8994(07)00417-1CrossRefGoogle ScholarPubMed
Lange, S. J., & Que, L. Jr. (1998). Oxygen activating nonheme iron enzymes. Current Opinion in Chemical Biology, 2(2), 159172. doi: 10.1016/s1367-5931(98)80057-4CrossRefGoogle ScholarPubMed
Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer, E., … Reichenbach, J. R. (2012). Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage, 62(3), 15931599. doi: 10.1016/j.neuroimage.2012.05.049CrossRefGoogle Scholar
Looker, A. C., Cogswell, M. E., & Gunter, E. W. (2002). Iron deficiency – United States, 1999–2000. Retrieved from http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5140a1.htm#tab1.Google Scholar
Low, M. S., Speedy, J., Styles, C. E., De-Regil, L. M., & Pasricha, S. R. (2016). Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database of Systematic Review, 4, CD009747. doi: 10.1002/14651858.CD009747.pub2Google ScholarPubMed
Lozoff, B., & Georgieff, M. K. (2006). Iron deficiency and brain development. Seminars in Pediatric Neurology, 13(3), 158165. doi: 10.1016/j.spen.2006.08.004CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Hagen, J., Mollen, E., & Wolf, A. W. (2000). Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics, 105(4), E51.CrossRefGoogle ScholarPubMed
Lozoff, B., Smith, J. B., Kaciroti, N., Clark, K. M., Guevara, S., & Jimenez, E. (2013). Functional significance of early-life iron deficiency: Outcomes at 25 years. Journal of Pediatrics, 163(5), 12601266. doi: 10.1016/j.jpeds.2013.05.015CrossRefGoogle ScholarPubMed
Mast, A. E., Blinder, M. A., Gronowski, A. M., Chumley, C., & Scott, M. G. (1998). Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clinical Chemistry, 44(1), 4551.CrossRefGoogle ScholarPubMed
Matsuo, K., Rosenberg, D. R., Easter, P. C., MacMaster, F. P., Chen, H. H., Nicoletti, M., … Soares, J. C. (2008). Striatal volume abnormalities in treatment-naïve patients diagnosed with pediatric major depressive disorder. Journal of Child and Adolescent Psychopharmacology, 18(2), 121131. doi: 10.1089/cap.2007.0026CrossRefGoogle ScholarPubMed
McCann, J. C., & Ames, B. N. (2007). An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. American Journal of Clinical Nutrition, 85(4), 931945.CrossRefGoogle ScholarPubMed
Mikami, K., Okazawa, H., Kimoto, K., Akama, F., Onishi, Y., Takahashi, Y., … Matsumoto, H. (2019). Effect of oral iron administration on mental state in children with low serum ferritin concentration. Global Pediatric Health, 6, 2333794X19884816. doi: 10.1177/2333794X19884816CrossRefGoogle Scholar
Mohamed, W. M., Unger, E. L., Kambhampati, S. K., & Jones, B. C. (2011). Methylphenidate improves cognitive deficits produced by infantile iron deficiency in rats. Behavioural Brain Research, 216(1), 146152. doi: 10.1016/j.bbr.2010.07.025CrossRefGoogle ScholarPubMed
Mojtabai, R., & Olfson, M. (2020). National trends in mental health care for US adolescents. JAMA Psychiatry, 77(7), 703714. doi: 10.1001/jamapsychiatry.2020.0279CrossRefGoogle ScholarPubMed
Mojtabai, R., Olfson, M., & Han, B. (2016). National trends in the prevalence and treatment of depression in adolescents and young adults. Pediatrics, 138(6), e20161878. doi: 10.1542/peds.2016-1878.CrossRefGoogle ScholarPubMed
Moller, H. E., Bossoni, L., Connor, J. R., Crichton, R. R., Does, M. D., Ward, R. J., … Ronen, I. (2019). Iron, myelin, and the brain: Neuroimaging meets neurobiology. Trends in Neurosciences, 42(6), 384401. doi: 10.1016/j.tins.2019.03.009CrossRefGoogle ScholarPubMed
Mudd, A. T., Fil, J. E., Knight, L. C., Lam, F., Liang, Z. P., & Dilger, R. N. (2018). Early-life iron deficiency reduces brain iron content and alters brain tissue composition despite iron repletion: A neuroimaging assessment. Nutrients, 10(2), 135. doi: 10.3390/nu10020135.CrossRefGoogle ScholarPubMed
Murray-Kolb, L. E. (2011). Iron status and neuropsychological consequences in women of reproductive age: What do we know and where are we headed? Journal of Nutrition, 141(4), 747S755S. doi: 10.3945/jn.110.130658CrossRefGoogle ScholarPubMed
Navari, S., & Dazzan, P. (2009). Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychological Medicine, 39(11), 17631777. doi: 10.1017/S0033291709005315CrossRefGoogle ScholarPubMed
Nelson, C., Erikson, K., Pinero, D. J., & Beard, J. L. (1997). In vivo dopamine metabolism is altered in iron-deficient anemic rats. Journal of Nutrition, 127(12), 22822288.CrossRefGoogle ScholarPubMed
North, M., Dallalio, G., Donath, A. S., Melink, R., & Means, R. T. Jr. (1997). Serum transferrin receptor levels in patients undergoing evaluation of iron stores: Correlation with other parameters and observed versus predicted results. Clinical and Laboratory Haematology, 19(2), 9397. doi: 10.1046/j.1365-2257.1997.00041.xCrossRefGoogle ScholarPubMed
Ogden, C. L., Kuczmarski, R. J., Flegal, K. M., Mei, Z., Guo, S., Wei, R., … Johnson, C. L. (2002). Centers for disease control and prevention 2000 growth charts for the United States: Improvements to the 1977 National Center for Health Statistics version. Pediatrics, 109(1), 4560.CrossRefGoogle Scholar
Peterson, E. T., Kwon, D., Luna, B., Larsen, B., Prouty, D., De Bellis, M. D., … Pfefferbaum, A. (2019). Distribution of brain iron accrual in adolescence: Evidence from cross-sectional and longitudinal analysis. Human Brain Mapping, 40(5), 14801495. doi: 10.1002/hbm.24461CrossRefGoogle ScholarPubMed
Pino, J. M. V., da Luz, M. H. M., Antunes, H. K. M., Giampa, S. Q. C., Martins, V. R., & Lee, K. S. (2017). Iron-restricted diet affects brain ferritin levels, dopamine metabolism and cellular prion protein in a region-specific manner. Frontiers in Molecular Neuroscience, 10, 145. doi: 10.3389/fnmol.2017.00145CrossRefGoogle Scholar
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166(6), 702710. doi: 10.1176/appi.ajp.2008.08081201CrossRefGoogle ScholarPubMed
Rangan, A. M., Blight, G. D., & Binns, C. W. (1998). Iron status and non-specific symptoms of female students. Journal of the American College of Nutrition, 17(4), 351355. doi: 10.1080/07315724.1998.10718774CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P. W., Lerch, J. P., Clasen, L. S., Greenstein, D., Berman, R., … Giedd, J. N. (2014). Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proceedings of the National Academy of Sciences of the USA, 111(4), 15921597. doi: 10.1073/pnas.1316911111CrossRefGoogle ScholarPubMed
Rouault, T. A., & Cooperman, S. (2006). Brain iron metabolism. Seminars in Pediatric Neurology, 13(3), 142148. doi: 10.1016/j.spen.2006.08.002CrossRefGoogle ScholarPubMed
Schmidt, A. T., Waldow, K. J., Grove, W. M., Salinas, J. A., & Georgieff, M. K. (2007). Dissociating the long-term effects of fetal/neonatal iron deficiency on three types of learning in the rat. Behavioral Neuroscience, 121(3), 475482. doi: 10.1037/0735-7044.121.3.475CrossRefGoogle ScholarPubMed
Sedlacik, J., Boelmans, K., Lobel, U., Holst, B., Siemonsen, S., & Fiehler, J. (2014). Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T. Neuroimage, 84, 10321041. doi: 10.1016/j.neuroimage.2013.08.051CrossRefGoogle ScholarPubMed
Sever, Y., Ashkenazi, A., Tyano, S., & Weizman, A. (1997). Iron treatment in children with attention deficit hyperactivity disorder. A preliminary report. Neuropsychobiology, 35(4), 178180.CrossRefGoogle ScholarPubMed
Song, M. K., Lin, F. C., Ward, S. E., & Fine, J. P. (2013). Composite variables: When and how. Nursing Research, 62, 4549. https://doi.org/10.1097/NNR.0b013e3182741948.CrossRefGoogle ScholarPubMed
Sun, H., & Weaver, C. M. (2021). Decreased iron intake parallels rising iron deficiency anemia and related mortality rates in the US population. Journal of Nutrition, 151(7), 19471955. https://doi.org/10.1093/jn/nxab064.CrossRefGoogle ScholarPubMed
Tansey, F. A., & Cammer, W. (1988). Acetyl-CoA carboxylase in rat brain. I. Activities in homogenates and isolated fractions. Brain Research, 471(1), 123130. doi: 10.1016/0165-3806(88)90157-5CrossRefGoogle Scholar
Tran, P. V., Kennedy, B. C., Pisansky, M. T., Won, K. J., Gewirtz, J. C., Simmons, R. A., & Georgieff, M. K. (2016). Prenatal choline supplementation diminishes early-life iron deficiency-induced reprogramming of molecular networks associated with behavioral abnormalities in the adult rat hippocampus. Journal of Nutrition, 146(3), 484493. doi: 10.3945/jn.115.227561CrossRefGoogle ScholarPubMed
Trumbo, P., Schlicker, S., Yates, A. A., & Poos, M. (2002). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Journal of the American Dietetic Association, 102(11), 16211630.CrossRefGoogle ScholarPubMed
Turner, C. A., Xie, D., Zimmerman, B. M., & Calarge, C. A. (2010). Iron status in toddlerhood predicts sensitivity to psychostimulants in children. Journal of Attention Disorders, 16(4), 295303. 1087054710385067.CrossRefGoogle ScholarPubMed
Twenge, J. M., Cooper, A. B., Joiner, T. E., Duffy, M. E., & Binau, S. G. (2019). Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005–2017. Journal of Abnormal Psychology, 128(3), 185199. doi: 10.1037/abn0000410CrossRefGoogle Scholar
Vahdat Shariatpanaahi, M., Vahdat Shariatpanaahi, Z., Moshtaaghi, M., Shahbaazi, S. H., & Abadi, A. (2007). The relationship between depression and serum ferritin level. European Journal of Clinical Nutrition, 61(4), 532535. doi: 10.1038/sj.ejcn.1602542CrossRefGoogle ScholarPubMed
Verdon, F., Burnand, B., Stubi, C. L., Bonard, C., Graff, M., Michaud, A., … Favrat, B. (2003). Iron supplementation for unexplained fatigue in non-anaemic women: Double blind randomised placebo controlled trial. BMJ, 326(7399), 1124. doi: 10.1136/bmj.326.7399.1124CrossRefGoogle ScholarPubMed
Vulser, H., Lemaitre, H., Artiges, E., Miranda, R., Penttilä, J., Struve, M., … Paillère-Martinot, M. L. (2015). Subthreshold depression and regional brain volumes in young community adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 54(10), 832840. doi: 10.1016/j.jaac.2015.07.006CrossRefGoogle ScholarPubMed
Vulser, H., Wiernik, E., Hoertel, N., Thomas, F., Pannier, B., Czernichow, S., … Lemogne, C. (2016). Association between depression and anemia in otherwise healthy adults. Acta Psychiatrica Scandinavica, 134(2), 150160. doi: 10.1111/acps.12595CrossRefGoogle ScholarPubMed
Wade, Q. W., Chiou, B., & Connor, J. R. (2019). Iron uptake at the blood-brain barrier is influenced by sex and genotype. Advances in Pharmacology, 84, 123145. doi: 10.1016/bs.apha.2019.02.005CrossRefGoogle ScholarPubMed
Wassef, A., Nguyen, Q. D., & St-Andre, M. (2019). Anaemia and depletion of iron stores as risk factors for postpartum depression: A literature review. Journal of Psychosomatic Obstetrics and Gynaecology, 40(1), 1928. doi: 10.1080/0167482X.2018.1427725CrossRefGoogle ScholarPubMed
Wei, W., & Wang, X. J. (2016). Inhibitory control in the cortico-basal ganglia-thalamocortical loop: Complex regulation and interplay with memory and decision processes. Neuron, 92(5), 10931105. doi: 10.1016/j.neuron.2016.10.031CrossRefGoogle ScholarPubMed
Weissman, M. M., Orvaschel, H., & Padian, N. (1980). Children's symptom and social functioning self-report scales. Comparison of mothers’ and children's reports. Journal of Nervous and Mental Disease, 168(12), 736740.CrossRefGoogle ScholarPubMed
WHO, World Health Organization. (2001). Iron deficiency anaemia – Assessment, prevention, and control. A guide for programme managers. https://www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf.Google Scholar
WHO, World Health Organization. (2011). Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Retrieved from http://www.who.int/vmnis/indicators/serum_ferritin.pdf.Google Scholar
Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neuroimage, 96, 6772. doi: 10.1016/j.neuroimage.2014.03.072CrossRefGoogle ScholarPubMed
Williams, L. M. (2016). Precision psychiatry: A neural circuit taxonomy for depression and anxiety. The Lancet. Psychiatry, 3(5), 472480. doi: 10.1016/S2215-0366(15)00579-9CrossRefGoogle ScholarPubMed
Xu, X., Wang, Q., & Zhang, M. (2008). Age, gender, and hemispheric differences in iron deposition in the human brain: An in vivo MRI study. Neuroimage, 40(1), 3542. doi: 10.1016/j.neuroimage.2007.11.017CrossRefGoogle Scholar
Youdim, M. B. (2008). Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotoxicity Research, 14(1), 4556.CrossRefGoogle ScholarPubMed
Zamora, T. G., Guiang, S. F., 3rd, Widness, J. A., & Georgieff, M. K. (2016). Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatric Research, 79(6), 922928. doi: 10.1038/pr.2016.20CrossRefGoogle ScholarPubMed
Supplementary material: File

Abbas et al. supplementary material

Abbas et al. supplementary material

Download Abbas et al. supplementary material(File)
File 268.9 KB