Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T01:41:18.768Z Has data issue: false hasContentIssue false

Intermittent theta burst stimulation to the left dorsolateral prefrontal cortex improves working memory of subjects with methamphetamine use disorder

Published online by Cambridge University Press:  27 October 2021

Yi Zhang
Affiliation:
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
Yixuan Ku
Affiliation:
Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
Junfeng Sun
Affiliation:
School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
Zafiris J. Daskalakis*
Affiliation:
Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
Ti-Fei Yuan*
Affiliation:
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
*
Authors for correspondence: Ti-Fei Yuan, E-mail: ytf0707@126.com, Zafiris Daskalakis, E-mail: zdaskalakis@health.ucsd.edu
Authors for correspondence: Ti-Fei Yuan, E-mail: ytf0707@126.com, Zafiris Daskalakis, E-mail: zdaskalakis@health.ucsd.edu

Abstract

Background

Repetitive transcranial magnetic stimulation has been employed to treat drug dependence, reduce drug use and improve cognition. The aim of the study was to analyze the effectiveness of intermittent theta-burst stimulation (iTBS) on cognition in individuals with methamphetamine use disorder (MUD).

Methods

This was a secondary analysis of 40 MUD subjects receiving left dorsolateral prefrontal cortex (L-DLPFC) iTBS or sham iTBS for 20 times over 10 days (twice-daily). Changes in working memory (WM) accuracy, reaction time, and sensitivity index were analyzed before and after active and sham rTMS treatment. Resting-state EEG was also acquired to identify potential biological changes that may relate to any cognitive improvement.

Results

The results showed that iTBS increased WM accuracy and discrimination ability, and improved reaction time relative to sham iTBS. iTBS also reduced resting-state delta power over the left prefrontal region. This reduction in resting-state delta power correlated with the changes in WM.

Conclusions

Prefrontal iTBS may enhance WM performance in MUD subjects. iTBS induced resting EEG changes raising the possibility that such findings may represent a biological target of iTBS treatment response.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeken, C., Duprat, R., Wu, G. R., De Raedt, R., & van Heeringen, K. (2017). Subgenual anterior cingulate-medial orbitofrontal functional connectivity in medication-resistant major depression: A neurobiological marker for accelerated intermittent theta-burst stimulation treatment? Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(7), 556565.Google ScholarPubMed
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 11951205.CrossRefGoogle ScholarPubMed
Barr, M. S., Farzan, F., Rajji, T. K., Voineskos, A. N., Blumberger, D. M., Arenovich, T., … Daskalakis, Z. J. (2013). Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biological Psychiatry, 73(6), 510517.CrossRefGoogle ScholarPubMed
Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F., & Baxter, C. (2011). Remember the future: Working memory training decreases delay discounting among stimulant addicts. Biological Psychiatry, 69(3), 260265.CrossRefGoogle ScholarPubMed
Blumberger, D. M., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Giacobbe, P., … Downar, J. (2018). Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (three-d): A randomised non-inferiority trial. Lancet (London, England), 391(10131), 16831692.CrossRefGoogle ScholarPubMed
Brooks, S. J., Wiemerslage, L., Burch, K. H., Maiorana, S. A., Cocolas, E., Schiöth, H. B., … Stein, D. J. (2017). The impact of cognitive training in substance use disorder: The effect of working memory training on impulse control in methamphetamine users. Psychopharmacology (Berl), 234(12), 19111921.CrossRefGoogle ScholarPubMed
Caeyenberghs, K., Duprat, R., Leemans, A., Hosseini, H., Wilson, P. H., Klooster, D., & Baeken, C. (2019). Accelerated intermittent theta-burst stimulation in major depression induces decreases in modularity: A connectome analysis. Network Neuroscience, 3(1), 157172.CrossRefGoogle ScholarPubMed
Chang, L., Ernst, T., Speck, O., Patel, H., DeSilva, M., Leonido-Yee, M., & Miller, E. N. (2002). Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Research, 114(2), 6579.CrossRefGoogle ScholarPubMed
Chung, S. W., Rogasch, N. C., Hoy, K. E., & Fitzgerald, P. B. (2018). The effect of single and repeated prefrontal intermittent theta-burst stimulation on cortical reactivity and working memory. Brain Stimulation, 11(3), 566574.CrossRefGoogle ScholarPubMed
Chung, S. W., Sullivan, C. M., Rogasch, N. C., Hoy, K. E., Bailey, N. W., Cash, R. F. H., & Fitzgerald, P. B. (2019). The effects of individualised intermittent theta-burst stimulation in the prefrontal cortex: A TMS-EEG study. Human Brain Mapping, 40(2), 608627.CrossRefGoogle ScholarPubMed
Colzato, L. S., Jongkees, B. J., Sellaro, R., & Hommel, B. (2013). Working memory reloaded: Tyrosine repletes updating in the n-back task. Frontiers in Behavioral Neuroscience, 7, 200.CrossRefGoogle ScholarPubMed
Committee CNNC (2020). 2019 China drug situation report. China National Narcotics Control Network: China National Narcotics Control Committee Retrieved from http://www.nncc626.com/2020-06/24/c_1210675824.htm.Google Scholar
Curtis, C. E. (2006). Prefrontal and parietal contributions to spatial working memory. Neuroscience, 139(1), 173180.CrossRefGoogle ScholarPubMed
Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415423.CrossRefGoogle ScholarPubMed
D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378(6554), 279281.CrossRefGoogle ScholarPubMed
de Wit, H. (2009). Impulsivity as a determinant and consequence of drug use: A review of underlying processes. Addiction Biology, 14(1), 2231.CrossRefGoogle ScholarPubMed
Diedenhofen, B., & Musch, J. (2015). Cocor: A comprehensive solution for the statistical comparison of correlations. PLoS One, 10(3), e0121945e0121945.CrossRefGoogle ScholarPubMed
Dougall, N., Maayan, N., Soares-Weiser, K., McDermott, L. M., & McIntosh, A. (2015). Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database of Systematic Reviews (8), Cd006081. doi:10.1002/14651858.CD006081.pub2.CrossRefGoogle ScholarPubMed
Duan, A. R., Varela, C., Zhang, Y., Shen, Y., Xiong, L., Wilson, M. A., & Lisman, J. (2015). Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: Relevance to schizophrenia. Biological Psychiatry, 77(12), 10981107.CrossRefGoogle ScholarPubMed
Eckart, C., Fuentemilla, L., Bauch, E. M., & Bunzeck, N. (2014). Dopaminergic stimulation facilitates working memory and differentially affects prefrontal low theta oscillations. Neuroimage, 94, 185192.CrossRefGoogle ScholarPubMed
Eshel, N., Keller, C. J., Wu, W., Jiang, J., Mills-Finnerty, C., Huemer, J., … Etkin, A. (2020). Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology, 45(6), 10181025.CrossRefGoogle ScholarPubMed
Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: Updating actions to habits to compulsions ten years on. Annual Review of Psychology, 67, 2350.CrossRefGoogle Scholar
Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., & Driver, J. (2011). Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 1751017515.CrossRefGoogle ScholarPubMed
Finn, P. R. (2002). Motivation, working memory, and decision making: A cognitive-motivational theory of personality vulnerability to alcoholism. Behavioral and Cognitive Neuroscience Reviews, 1(3), 183205.CrossRefGoogle ScholarPubMed
Fonseca, L. C., Tedrus, G. M., Prandi, L. R., Almeida, A. M., & Furlanetto, D. S. (2011). Alzheimer's disease: Relationship between cognitive aspects and power and coherence EEG measures. Arquivos de Neuro-Psiquiatria, 69(6), 875881.CrossRefGoogle ScholarPubMed
Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science (New York, N.Y.), 173(3997), 652654.CrossRefGoogle ScholarPubMed
Gamboa, O. L., Antal, A., Moliadze, V., & Paulus, W. (2010). Simply longer is not better: Reversal of theta-burst after-effect with prolonged stimulation. Experimental Brain Research, 204(2), 181187.CrossRefGoogle Scholar
Ghosh, J. K., Delampady, M., & Samanta, T. (2006) An introduction to Bayesian analysis: Theory and methods (Vol. 725): New York: Springer.Google Scholar
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477485.CrossRefGoogle ScholarPubMed
Gonzalez, R., Bechara, A., & Martin, E. M. (2007). Executive functions among individuals with methamphetamine or alcohol as drugs of choice: Preliminary observations. Journal of Clinical and Experimental Neuropsychology, 29(2), 155159.CrossRefGoogle ScholarPubMed
Harding, I. H., Yücel, M., Harrison, B. J., Pantelis, C., & Breakspear, M. (2015). Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory. Neuroimage, 106, 144153.CrossRefGoogle ScholarPubMed
Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7, 83.CrossRefGoogle ScholarPubMed
Hill, A. T., McModie, S., Fung, W., Hoy, K. E., Chung, S. W., & Bertram, K. L. (2020). Impact of prefrontal intermittent theta-burst stimulation on working memory and executive function in Parkinson's disease: A double-blind sham-controlled pilot study. Brain Research, 1726, 146506.CrossRefGoogle ScholarPubMed
Houben, K., Wiers, R. W., & Jansen, A. (2011). Getting a grip on drinking behavior: Training working memory to reduce alcohol abuse. Psychological Science, 22(7), 968975.CrossRefGoogle ScholarPubMed
Hoy, K. E., Bailey, N., Michael, M., Fitzgibbon, B., Rogasch, N. C., Saeki, T., & Fitzgerald, P. B. (2016). Enhancement of working memory and task-related oscillatory activity following intermittent theta-burst stimulation in healthy controls. Cerebral Cortex, 26(12), 45634573.CrossRefGoogle ScholarPubMed
Jann, K., Kottlow, M., Dierks, T., Boesch, C., & Koenig, T. (2010). Topographic electrophysiological signatures of fMRI resting state networks. PLoS One, 5(9), e12945.CrossRefGoogle ScholarPubMed
Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A., … Willis, C. R. (1998). The role of parietal cortex in verbal working memory. The Journal of Neuroscience, 18(13), 50265034.CrossRefGoogle ScholarPubMed
Kalechstein, A. D., De la Garza, R. 2nd, Newton, T. F., Green, M. F., Cook, I. A., & Leuchter, A. F. (2009) Quantitative EEG abnormalities are associated with memory impairment in recently abstinent methamphetamine-dependent individuals. The Journal of Neuropsychiatry and Clinical Neurosciences 21(3), 254258.CrossRefGoogle ScholarPubMed
Kaster, T. S., Downar, J., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., … Blumberger, D. M. (2019). Trajectories of response to dorsolateral prefrontal rTMS in major depression: A three-d study. American Journal of Psychiatry, 176(5), 367375.CrossRefGoogle ScholarPubMed
King, D. E., Herning, R. I., Gorelick, D. A., & Cadet, J. L. (2000). Gender differences in the EEG of abstinent cocaine abusers. Neuropsychobiology, 42(2), 9398.CrossRefGoogle ScholarPubMed
Knyazev, G. G. (2012). EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neuroscience and Biobehavioral Reviews, 36(1), 677695.CrossRefGoogle ScholarPubMed
Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science (New York, N.Y.), 355(6325), 584585.CrossRefGoogle ScholarPubMed
Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user's guide (2nd ed.). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.Google Scholar
McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103107.CrossRefGoogle ScholarPubMed
Morgante, F., Espay, A. J., Gunraj, C., Lang, A. E., & Chen, R. (2006). Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias. Brain, 129(Pt 4), 10591069.CrossRefGoogle ScholarPubMed
Newton, T. F., Cook, I. A., Kalechstein, A. D., Duran, S., Monroy, F., Ling, W., & Leuchter, A. F. (2003). Quantitative EEG abnormalities in recently abstinent methamphetamine-dependent individuals. Clinical Neurophysiology, 114(3), 410415.CrossRefGoogle ScholarPubMed
Peter, V., Kalashnikova, M., & Burnham, D. (2016). Neural processing of amplitude and formant rise time in dyslexia. Developmental Cognitive Neuroscience, 19, 152163.CrossRefGoogle ScholarPubMed
Peter, V., Kalashnikova, M., Santos, A., & Burnham, D. (2016). Mature neural responses to infant-directed speech but not adult-directed speech in pre-verbal infants. Scientific Reports, 6, 34273.CrossRefGoogle Scholar
Pripfl, J., Tomova, L., Riecansky, I., & Lamm, C. (2014). Transcranial magnetic stimulation of the left dorsolateral prefrontal cortex decreases cue-induced nicotine craving and EEG delta power. Brain Stimulation, 7(2), 226233.CrossRefGoogle ScholarPubMed
Qazi, E.-U.-H., Hussain, M., & Aboalsamh, H. (2019). An efficient intelligent system for the classification of electroencephalography (EEG) brain signals using nuclear features for human cognitive tasks. Journal of Intelligent & Fuzzy Systems, 37(1), 913928.CrossRefGoogle Scholar
Rass, O., Ahn, W. Y., & O'Donnell, B. F. (2016). Resting-state EEG, impulsiveness, and personality in daily and nondaily smokers. Clinical Neurophysiology, 127(1), 409418.CrossRefGoogle ScholarPubMed
Rieckmann, A., Karlsson, S., Fischer, H., & Bäckman, L. (2011). Caudate dopamine d1 receptor density is associated with individual differences in frontoparietal connectivity during working memory. The Journal of Neuroscience, 31(40), 1428414290.CrossRefGoogle ScholarPubMed
Rolle, C. E., Fonzo, G. A., Wu, W., Toll, R., Jha, M. K., Cooper, C., … Etkin, A. (2020). Cortical connectivity moderators of antidepressant vs placebo treatment response in major depressive disorder: Secondary analysis of a randomized clinical trial. JAMA Psychiatry, 77(4), 397408.CrossRefGoogle ScholarPubMed
Rossi, S., & Rossini, P. M. (2004). TMS in cognitive plasticity and the potential for rehabilitation. Trends in Cognitive Sciences, 8(6), 273279.CrossRefGoogle ScholarPubMed
Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., … Eickhoff, S. B. (2012). Modelling neural correlates of working memory: A coordinate-based meta-analysis. Neuroimage, 60(1), 830846.CrossRefGoogle ScholarPubMed
Sabbagh, M., Sadowsky, C., Tousi, B., Agronin, M. E., Alva, G., Armon, C., … Pascual-Leone, A. (2020). Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease. Alzheimer's & Dementia, 16(4), 641650.CrossRefGoogle ScholarPubMed
Sandrini, M., Rossini, P. M., & Miniussi, C. (2008). Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Neuropsychologia, 46(7), 20562063.CrossRefGoogle ScholarPubMed
Schulze, L., Feffer, K., Lozano, C., Giacobbe, P., Daskalakis, Z. J., Blumberger, D. M., & Downar, J. (2018). Number of pulses or number of sessions? An open-label study of trajectories of improvement for once-vs. Twice-daily dorsomedial prefrontal rTMS in major depression. Brain Stimulation, 11(2), 327336.CrossRefGoogle ScholarPubMed
Shen, Y., Cao, X., Tan, T., Shan, C., Wang, Y., Pan, J., … Yuan, T. F. (2016). 10-Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex reduces heroin cue craving in long-term addicts. Biological Psychiatry, 80(3), e13e14.CrossRefGoogle ScholarPubMed
Simões, P. F., Silva, A. P., Pereira, F. C., Marques, E., Grade, S., Milhazes, N., … Macedo, T. R. (2007). Methamphetamine induces alterations on hippocampal NMDA and AMPA receptor subunit levels and impairs spatial working memory. Neuroscience, 150(2), 433441.CrossRefGoogle ScholarPubMed
Son, K. L., Choi, J. S., Lee, J., Park, S. M., Lim, J. A., Lee, J. Y., … Kwon, J. S. (2015). Neurophysiological features of internet gaming disorder and alcohol use disorder: A resting-state EEG study. Translational Psychiatry, 5(9), e628.CrossRefGoogle ScholarPubMed
Steele, V. R., Maxwell, A. M., Ross, T. J., Stein, E. A., & Salmeron, B. J. (2019). Accelerated intermittent theta-burst stimulation as a treatment for cocaine use disorder: A proof-of-concept study. Frontiers in Neuroscience, 13, 1147.CrossRefGoogle ScholarPubMed
Strafella, A. P., Paus, T., Barrett, J., & Dagher, A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. The Journal of Neuroscience, 21(15), Rc157.CrossRefGoogle ScholarPubMed
Strimmer, K. (2008). Fdrtool: A versatile r package for estimating local and tail area-based false discovery rates. Bioinformatics (Oxford, England), 24(12), 14611462.Google ScholarPubMed
Suppa, A., Huang, Y. Z., Funke, K., Ridding, M. C., Cheeran, B., Di Lazzaro, V., … Rothwell, J. C. (2016). Ten years of theta-burst stimulation in humans: Established knowledge, unknowns and prospects. Brain Stimulation, 9(3), 323335.CrossRefGoogle ScholarPubMed
van Doorn, J., van den Bergh, D., Böhm, U., Dablander, F., Derks, K., Draws, T., … Wagenmakers, E.-J. (2021). The JASP guidelines for conducting and reporting a Bayesian analysis. Psychonomic Bulletin & Review, 28(3), 813826.CrossRefGoogle ScholarPubMed
Vasishth, S., Mertzen, D., Jäger, L. A., & Gelman, A. (2018). The statistical significance filter leads to overoptimistic expectations of replicability. Journal of Memory and Language, 103, 151175.CrossRefGoogle Scholar
Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-u dopamine d1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10(3), 376384.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wise, R. A., & Baler, R. (2017). The dopamine motive system: Implications for drug and food addiction. Nature Reviews Neuroscience, 18(12), 741752.CrossRefGoogle ScholarPubMed
Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part ii: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 5876.CrossRefGoogle ScholarPubMed
Wang, S., Itthipuripat, S., & Ku, Y. (2019). Electrical stimulation over human posterior parietal cortex selectively enhances the capacity of visual short-term memory. The Journal of Neuroscience, 39(3), 528536.CrossRefGoogle ScholarPubMed
Wu, Y. J., Tseng, P., Chang, C. F., Pai, M. C., Hsu, K. S., Lin, C. C., & Juan, C. H. (2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91, 8794.CrossRefGoogle ScholarPubMed
Zandvakili, A., Philip, N. S., Jones, S. R., Tyrka, A. R., Greenberg, B. D., & Carpenter, L. L. (2019). Use of machine learning in predicting clinical response to transcranial magnetic stimulation in comorbid posttraumatic stress disorder and major depression: A resting-state electroencephalography study. Journal of Affective Disorders, 252, 4754.CrossRefGoogle ScholarPubMed
Zarjam, P., Epps, J., & Chen, F. (2011) Characterizing working memory load using EEG delta activity. Paper presented at the 2011 19th European Signal Processing Conference.Google Scholar
Zhang, J. J. Q., Fong, K. N. K., Ouyang, R. G., Siu, A. M. H., & Kranz, G. S. (2019). Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: A systematic review and meta-analysis. Addiction, 114(12), 21372149.CrossRefGoogle ScholarPubMed
Zhao, D., Zhang, M., Tian, W., Cao, X., Yin, L., Liu, Y., … Yuan, T. F. (2021). Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder. Molecular Psychiatry. doi:10.1038/s41380-021-01252-5.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material

Download Zhang et al. supplementary material(File)
File 9.1 MB