Skip to main content Accessibility help

The impact of parent socio-economic status on executive functioning and cortical morphology in individuals with schizophrenia and healthy controls

  • R. A. Yeo (a1) (a2), D. Martinez (a1), J. Pommy (a1), S. Ehrlich (a3) (a4), S. C. Schulz (a5), B.-C. Ho (a6), J. R. Bustillo (a2) (a7) and V. D. Calhoun (a2) (a8)...



Relatively lower executive functioning is characteristic of individuals with schizophrenia. As low socio-economic status (SES) early in life (i.e. parent SES) has been linked with lower executive skills in healthy children, we hypothesized that parental SES (pSES) would be more strongly related to executive functioning in individuals with schizophrenia than in controls and have a greater impact on prefrontal cortical morphology.


Healthy controls (n = 125) and individuals with schizophrenia (n = 102) completed tests assessing executive functioning and intelligence. The groups were matched on pSES, which was evaluated with the Hollingshead–Redlich scale. A principal components analysis (PCA) was conducted on 10 variables from six executive tests, yielding three specific components (fluency, planning and response inhibition). Voxel-based morphometry (VBM) was used to evaluate effects of pSES on gray matter (GM) concentration.


Lower pSES was associated with lower scores across the three executive functioning components, and a significant group by pSES interaction was observed such that low pSES, in particular, affected individuals with schizophrenia. These effects remained significant when intellectual ability, education and self-SES (sSES) were added as covariates. VBM revealed that lower pSES was associated with reduced GM volume in several anterior brain regions, especially the superior frontal gyrus, in patients but not in controls.


These findings suggest that individuals with schizophrenia may be particularly vulnerable to the adverse impact of low pSES, in terms of both lower executive skills and reduced anterior GM volumes.


Corresponding author

* Address for correspondence: R. A. Yeo, Ph.D., Department of Psychology, University of New Mexico, Albuquerque, NM, USA. (Email:


Hide All
Andreasen, NC (1983). The Scale for the Assessment of Positive Symptoms. University of Iowa: Iowa City, IA.
Andreasen, NC, Flaum, M, Arndt, S (1992). The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology. Archives of General Psychiatry 49, 615623.
Ashburner, J, Friston, KJ (2005). Unified segmentation. NeuroImage 26, 839851.
Bradley, RH, Corwyn, RF (2002). Socioeconomic status and child development. Annual Review of Psychology 53, 371399.
Buda, M, Fornito, A, Bergstrom, ZM, Simons, JS (2011). A specific brain structural basis for individual differences in reality monitoring. Journal of Neuroscience 31, 1430814313.
Chan, SK, Chan, KK, Lam, MM, Chiu, CP, Hui, CL, Wong, GH, Chang, WC, Chen, EY (2012). Clinical and cognitive correlates of insight in first-episode schizophrenia. Schizophrenia Research 135, 4045.
Cohen, RA, Grieve, S, Hoth, KF, Paul, RH, Sweet, L, Tate, D, Gunstad, J, Stroud, L, McCaffery, J, Hitsman, B, Niaura, R, Clark, CR, MacFarlane, A, Bryant, R, Gordon, E, Williams, LM (2006). Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biological Psychiatry 59, 975982.
Delis, D, Kaplan, E, Kramer, J (2001). The Delis-Kaplan Executive Function System. Psychological Corporation: San Antonio, TX.
Dickinson, D, Goldberg, TE, Gold, JM, Elvevag, B, Weinberger, DR (2011). Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls. Schizophrenia Bulletin 37, 11571167.
Eisenberg, DP, Berman, KF (2010). Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 35, 258277.
First, MB, Spitzer, RL, Gibbon, M, Williams, JBW (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patent Edition (SCID-I/P) and Non-patient Edition (SCID-N/P). Biometrics Research Department, New York State Psychiatric Institute: New York.
Friedman, NP, Miyake, A, Young, SE, Defries, JC, Corley, RP, Hewitt, JK (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology. General 137, 201225.
Goghari, VM, Sponheim, SR, MacDonald, AW 3rd (2010). The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neuroscience and Biobehavioral Reviews 34, 468486.
Gottesman, II, Gould, TD (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636645.
Habets, P, Marcelis, M, Gronenschild, E, Drukker, M, van Os, J; Genetic Risk and Outcome of Psychosis (G.R.O.U.P) (2011). Reduced cortical thickness as an outcome of differential sensitivity to environmental risks in schizophrenia. Biological Psychiatry 69, 487494.
Hackman, DA, Farah, MJ, Meaney, MJ (2010). Socioeconomic status and the brain: mechanistic insights from human and animal research. Nature Reviews Neuroscience 11, 651659.
Hagmann, P, Cammoun, L, Gigandet, X, Meuli, R, Honey, CJ, Wedeen, V, Sporns, O (2008). Mapping the structural core of human cerebral cortex. Plos Biology 6, 14791493.
Hanscombe, KB, Trzaskowski, M, Haworth, CM, Davis, OS, Dale, PS, Plomin, R (2012). Socioeconomic status (SES) and children's intelligence (IQ): in a UK-representative sample SES moderates the environmental, not genetic, effect on IQ. Plos One 7, e30320.
Hanson, JL, Chandra, A, Wolfe, BL, Pollak, SD (2011). Association between income and the hippocampus. PLoS One 6, e18712.
Haworth, CM, Wright, MJ, Luciano, M, Martin, NG, de Geus, EJ, van Beijsterveldt, CE, Bartels, M, Posthuma, D, Boomsma, DI, Davis, OSP, Kovas, Y, Corley, RP, Defries, JC, Hewitt, JK, Olson, RK, Rhea, SA, Wadsworth, SJ, Iacono, WG, McGue, M, Thompson, LA, Hart, SA, Petrill, SA, Lubinski, D, Plomin, R (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry 15, 11121120.
Hofer, A, Bodner, T, Kaufmann, A, Kemmler, G, Mattarei, U, Pfaffenberger, NM, Rettenbacher, MA, Trebo, E, Yalcin, N, Fleischhacker, WW (2011). Symptomatic remission and neurocognitive functioning in patients with schizophrenia. Psychological Medicine 41, 21312139.
Hollingshead, AB, Redlich, FC (1958). Social Class and Mental Illness: A Community Study. Wiley & Sons: New York.
Hutton, SB, Puri, BK, Duncan, LJ, Robbins, TW, Barnes, TRE, Joyce, EM (1998). Executive function in first-episode schizophrenia. Psychological Medicine 28, 463473.
LaPointe, LL, Heald, GR, Stierwalt, JA, Kemker, BE, Maurice, T (2007). Effects of auditory distraction on cognitive processing of young adults. Journal of Attention Disorders 10, 398409.
Lezak, MD, Howieson, DB, Bigler, ED, Tranel, D (2012). Neuropsychological Assessment, 5th edn. Oxford University Press: New York.
Maldjian, JA, Laurienti, PJ, Kraft, RA, Burdette, JH (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19, 12331239.
McNeil, TF, Cantor-Graae, E, Weinberger, DR (2000). Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. American Journal of Psychiatry 157, 203212.
Minzenberg, MJ, Laird, AR, Thelen, S, Carter, CS, Glahn, DC (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry 66, 811822.
Nisbett, RE, Aronson, J, Blair, C, Dickens, W, Flynn, J, Halpern, DF, Turkheimer, E (2012). Intelligence new findings and theoretical developments. American Psychologist 67, 130159.
Puig, O, Penades, R, Baeza, I, Sanchez-Gistau, V, De La Serna, E, Fonrodona, L, Andres-Perpina, S, Bernardo, M, Castro-Fornieles, J (2012). Processing speed and executive functions predict real-world everyday living skills in adolescents with early-onset schizophrenia. European Child and Adolescent Psychiatry 21, 315326.
Segall, JM, Turner, JA, van Erp, TGM, White, T, Bockholt, HJ, Gollub, RL, Ho, BC, Magnotta, V, Jung, RE, McCarley, RW, Schulz, SC, Lauriello, J, Clark, VP, Voyvodic, JT, Diaz, MT, Calhoun, VD (2009). Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophrenia Bulletin 35, 8295.
Shallice, T (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 298, 199209.
Snitz, BE, MacDonald, AW 3rd, Carter, CS (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophrenia Bulletin 32, 179194.
Sponheim, SR, Jung, RE, Seidman, LJ, Mesholam-Gately, RI, Manoach, DS, O'Leary, DS, Ho, BC, Andreasen, NC, Lauriello, J, Schulz, SC (2010). Cognitive deficits in recent-onset and chronic schizophrenia. Journal of Psychiatric Research 44, 421428.
van den Heuvel, MP, Mandl, RC, Stam, CJ, Kahn, RS, Hulshoff Pol, HE (2010). Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. Journal of Neuroscience 30, 1591515926.
van den Heuvel, MP, Sporns, O (2011). Rich-club organization of the human connectome. Journal of Neuroscience 31, 1577515786.
van Harmelen, AL, van Tol, MJ, van der Wee, NJA, Veltman, DJ, Aleman, A, Spinhoven, P, van Buchem, MA, Zitman, FG, Penninx, BWJH, Elzinga, BM (2010). Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biological Psychiatry 68, 832838.
van Os, J, Kenis, G, Rutten, B (2010). The environment and schizophrenia. Nature Perspectives 468, 203212.
Wechsler, D (1997). Wechsler Adult Intelligence Scale, Third Edition (WAIS-III). Psychological Corporation: San Antonio, TX.
Welch, KA, McIntosh, AM, Job, DE, Whalley, HC, Moorhead, TW, Hall, J, Owens, DGC, Lawrie, SM, Johnstone, EC (2011). The impact of substance use on brain structure in people at high risk of developing schizophrenia. Schizophrenia Bulletin 37, 10661076.
Whitwell, JL (2009). Voxel-based morphometry: an automated technique for assessing structural changes in the brain. Journal of Neuroscience 29, 96619664.
Winkler, AM, Kochunov, P, Blangero, J, Almasy, L, Zilles, K, Fox, PT, Duggirala, R, Glahn, DC (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage 53, 11351146.
Yeo, RA, Gangestad, SW, Edgar, C, Thoma, R (1999). The evolutionary genetic underpinnings of schizophrenia: the developmental instability model. Schizophrenia Research 39, 197206.
Yeo, RA, Gangestad, SW, Thoma, RJ (2007). Developmental instability and individual variation in brain development: implications for the origin of neurodevelopmental disorders. Current Directions in Psychological Science 16, 245249.
Zink, CF, Tong, YX, Chen, Q, Bassett, DS, Stein, JL, Meyer-Lindenberg, A (2008). Know your place: neural processing of social hierarchy in humans. Neuron 58, 273283.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed