Skip to main content Accessibility help
×
Home

Heritability of reflexive social attention triggered by eye gaze and walking direction: common and unique genetic underpinnings

  • Li Wang (a1) (a2), Ying Wang (a1) (a2), Qian Xu (a1) (a2), Dong Liu (a1) (a2), Haoyue Ji (a1) (a2), Yiwen Yu (a1) (a2), Zhaoqi Hu (a1) (a2), Peijun Yuan (a1) (a2) and Yi Jiang (a1) (a2)...

Abstract

Background

Social attention ability is crucial for human adaptive social behaviors and interpersonal communications, and the malfunction of which has been implicated in autism spectrum disorder (ASD), a highly genetic neurodevelopmental disorder marked by striking social deficits.

Methods

Using a classical twin design, the current study investigated the genetic contribution to individual variation in social and non-social attention abilities, and further probed their potential genetic linkage. Moreover, individual autistic traits were further measured in an independent group of non-twin participants to examine the hypothetical link between the core social attention ability and ASD.

Results

We found reliable genetic influences on the social attentional effects induced by two distinct cues (eye gaze and walking direction), with 91% of their covariance accounted for by common genetic effects. However, no evidence of heritability or shared genetic effects was observed for the attentional effect directed by a non-social cue (i.e. arrow direction) and its correlation with the social attention ability. Remarkably, one's autistic traits could well predict his/her heritable core social attention ability extracted from the conventional social attentional effect.

Conclusions

These findings together suggest that human social attention ability is supported by unique genetic mechanisms that can be shared across different social, but not non-social, processing. Moreover, they also encourage the identification of ‘social attention genes’ and highlight the critical role of the core human social attention ability in seeking the endophenotypes of social cognitive disorders including ASD.

Copyright

Corresponding author

Author for correspondence: Yi Jiang, E-mail: yijiang@psych.ac.cn

References

Hide All
Bardi, L, Di Giorgio, E, Lunghi, M, Troje, NF and Simion, F (2015) Walking direction triggers visuo-spatial orienting in 6-month-old infants and adults: an eye tracking study. Cognition 141, 112120.
Baron-Cohen, S (1995) The eye direction detector (EDD) and the shared attention mechanism (SAM): two cases for evolutionary psychology. In Joint Attention: its Origins and Role in Development. Hillsdale, NJ: Erlbaum, pp. 4159.
Baron-Cohen, S, Wheelwright, S, Skinner, R, Martin, J and Clubley, E (2001) The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. Journal of Autism and Developmental Disorders 31, 517.
Bayliss, AP, di Pellegrino, G and Tipper, SP (2005) Sex differences in eye gaze and symbolic cueing of attention. The Quarterly Journal of Experimental Psychology Section A 58, 631650.
Birmingham, E and Kingstone, A (2009) Human social attention. Annals of the New York Academy of Sciences 1156, 118140.
Bruinsma, Y, Koegel, RL and Koegel, LK (2004) Joint attention and children with autism: a review of the literature. Mental Retardation and Developmental Disabilities Research Reviews 10, 169175.
Chen, J, Li, X, Zhang, J, Natsuaki, MN, Leve, LD, Harold, GT, Chen, Z, Yang, X, Guo, F and Zhang, J (2013) The Beijing Twin Study (BeTwiSt): a longitudinal study of child and adolescent development. Twin Research and Human Genetics 16, 9197.
Dawson, G, Bernier, R and Ring, RH (2012) Social attention: a possible early indicator of efficacy in autism clinical trials. Journal of Neurodevelopmental Disorders 4, 112.
Deaner, RO and Platt, ML (2003) Reflexive social attention in monkeys and humans. Current Biology 13, 16091613.
Driver, J, Davis, G, Ricciardelli, P, Kidd, P, Maxwell, E and Baron-Cohen, S (1999) Gaze perception triggers reflexive visuospatial orienting. Visual Cognition 6, 509540.
Ekman, P and Friesen, WV (1976) Pictures of facial affect. Consulting psychologists: Palo Alto, CA.
Engell, AD, Nummenmaa, L, Oosterhof, NN, Henson, RN, Haxby, JV and Calder, AJ (2010) Differential activation of frontoparietal attention networks by social and symbolic spatial cues. Social Cognitive and Affective Neuroscience 5, 432440.
Fan, J, Wu, Y, Fossella, JA and Posner, MI (2001) Assessing the heritability of attentional networks. BMC Neuroscience 2, 14.
Farroni, T, Massaccesi, S, Pividori, D and Johnson, MH (2004) Gaze following in newborns. Infancy 5, 3960.
Feng, Q, Zheng, Y, Zhang, X, Song, Y, Luo, Y-j, Li, Y and Talhelm, T (2011) Gender differences in visual reflexive attention shifting: evidence from an ERP study. Brain Research 1401, 5965.
Friesen, CK and Kingstone, A (1998) The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin and Review 5, 490495.
Friesen, CK and Kingstone, A (2003) Abrupt onsets and gaze direction cues trigger independent reflexive attentional effects. Cognition 87, B1B10.
Friesen, CK, Ristic, J and Kingstone, A (2004) Attentional effects of counterpredictive gaze and arrow cues. Journal of Experimental Psychology: Human Perception and Performance 30, 319329.
Frischen, A, Bayliss, AP and Tipper, SP (2007) Gaze cueing of attention: visual attention, social cognition, and individual differences. Psychological Bulletin 133, 694724.
Goldberg, MC, Mostow, AJ, Vecera, SP, Larson, JCG, Mostofsky, SH, Mahone, EM and Denckla, MB (2008) Evidence for impairments in using static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism. Journal of Autism and Developmental Disorders 38, 14051413.
Hirai, M, Saunders, DR and Troje, NF (2011) Allocation of attention to biological motion: local motion dominates global shape. Journal of Vision 11, 111.
Hood, BM, Willen, JD and Driver, J (1998) Adult's eyes trigger shifts of visual attention in human infants. Psychological Science 9, 131134.
Itier, RJ and Batty, M (2009) Neural bases of eye and gaze processing: the core of social cognition. Neuroscience & Biobehavioral Reviews 33, 843863.
Johnson, MH (2006) Biological motion: a perceptual life detector? Current Biology 16, R376R377.
Joseph, RM, Fricker, Z and Keehn, B (2015) Activation of frontoparietal attention networks by non-predictive gaze and arrow cues. Social Cognitive and Affective Neuroscience 10, 294301.
Kingstone, A, Tipper, C, Ristic, J and Ngan, E (2004) The eyes have it!: an fMRI investigation. Brain and Cognition 55, 269271.
Koster, EH, Leyman, L, De Raedt, R and Crombez, G (2006) Cueing of visual attention by emotional facial expressions: the influence of individual differences in anxiety and depression. Personality and Individual Differences 41, 329339.
Koster, EH, Crombez, G, Verschuere, B, Vanvolsem, P and De Houwer, J (2007) A time-course analysis of attentional cueing by threatening scenes. Experimental Psychology 54, 161171.
Kylliäinen, A and Hietanen, JK (2004) Attention orienting by another's gaze direction in children with autism. Journal of Child Psychology and Psychiatry 45, 435444.
Jakobsen, KV, Frick, JE and Simpson, EA (2013) Look here! The development of attentional orienting to symbolic cues. Journal of Cognition and Development 14, 229249.
Langton, SR and Bruce, V (1999) Reflexive visual orienting in response to the social attention of others. Visual Cognition 6, 541567.
Langton, SR, Watt, RJ and Bruce, V (2000) Do the eyes have it? Cues to the direction of social attention. Trends in Cognitive Sciences 4, 5059.
Maestro, S, Muratori, F, Cavallaro, MC, Pei, F, Stern, D, Golse, B and Palacio-Espasa, F (2002) Attentional skills during the first 6 months of age in autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry 41, 12391245.
Nuku, P and Bekkering, H (2008) Joint attention: inferring what others perceive (and don't perceive). Consciousness and Cognition 17, 339349.
Nummenmaa, L and Hietanen, JK (2009) How attentional systems process conflicting cues. The superiority of social over symbolic orienting revisited. Journal of Experimental Psychology: Human Perception and Performance 35, 17381754.
Okada, T, Sato, W, Murai, T, Kubota, Y and Toichi, M (2003) Eye gaze triggers visuospatial attentional shift in individuals with autism. Psychologia 46, 246254.
Perrett, D and Emery, N (1994) Understanding the intentions of others from visual signals: neurophysiological evidence. Cahiers de Psychologie Cognitive 13, 683694.
Perrett, D, Hietanen, J, Oram, M, Benson, P and Rolls, E (1992) Organization and functions of cells responsive to faces in the temporal cortex [and discussion]. Philosophical Transactions: Biological Sciences 335, 2330.
Posner, MI (1980) Orienting of attention. Quarterly Journal of Experimental Psychology 32, 325.
Richardson, DC and Gobel, MS (2015) Social attention. In Fawcett, JM, Risko, EF and Kingstone, A (eds), The Handbook of Attention. Cambridge: MIT Press, pp. 349367.
Risko, EF, Richardson, DC and Kingstone, A (2016) Breaking the fourth wall of cognitive science: real-world social attention and the dual function of gaze. Current Directions in Psychological Science 25, 7074.
Ristic, J, Friesen, CK and Kingstone, A (2002) Are eyes special? It depends on how you look at it. Psychonomic Bulletin & Review 9, 507513.
Ristic, J, Wright, A and Kingstone, A (2007) Attentional control and reflexive orienting to gaze and arrow cues. Psychonomic Bulletin & Review 14, 964969.
Rutherford, M and Krysko, KM (2008) Eye direction, not movement direction, predicts attention shifts in those with autism spectrum disorders. Journal of Autism and Developmental Disorders 38, 19581965.
Sato, W, Kochiyama, T, Uono, S and Yoshikawa, S (2009) Commonalities in the neural mechanisms underlying automatic attentional shifts by gaze, gestures, and symbols. NeuroImage 45, 984992.
Shane, MS and Peterson, JB (2007) An evaluation of early and late stage attentional processing of positive and negative information in dysphoria. Cognition and Emotion 21, 789815.
Shi, J, Weng, X, He, S and Jiang, Y (2010) Biological motion cues trigger reflexive attentional orienting. Cognition 117, 348354.
Thornton, IM and Vuong, QC (2004) Incidental processing of biological motion. Current Biology 14, 10841089.
Tipples, J (2002) Eye gaze is not unique: automatic orienting in response to uninformative arrows. Psychonomic Bulletin & Review 9, 314318.
Tipples, J (2008) Orienting to counterpredictive gaze and arrow cues. Perception & Psychophysics 70, 7787.
Troje, NF and Westhoff, C (2006) The inversion effect in biological motion perception: evidence for a ‘life detector’? Current Biology 16, 821824.
Uono, S, Sato, W and Kochiyama, T (2014) Commonalities and differences in the spatiotemporal neural dynamics associated with automatic attentional shifts induced by gaze and arrows. Neuroscience Research 87, 5665.
Vanrie, J and Verfaillie, K (2004) Perception of biological motion: a stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers 36, 625629.
Wang, L and Jiang, Y (2012) Life motion signals lengthen perceived temporal duration. Proceedings of the National Academy of Sciences 109, E673E677.
Wang, L, Yang, X, Shi, J and Jiang, Y (2014) The feet have it: local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage 84, 217224.
Zhang, L, Sun, Y, Chen, F, Wu, D, Tang, J, Han, X, Ye, J and Wang, K (2016) Psychometric properties of the Autism-Spectrum quotient in both clinical and non-clinical samples: Chinese version for mainland China. BMC Psychiatry 16, 213.
Zhao, J, Wang, L, Wang, Y, Weng, X, Li, S and Jiang, Y (2014) Developmental tuning of reflexive attentional effect to biological motion cues. Scientific Reports 4, 5558.
Zwaigenbaum, L, Bryson, S, Rogers, T, Roberts, W, Brian, J and Szatmari, P (2005) Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience 23, 143152.

Keywords

Type Description Title
WORD
Supplementary materials

Wang et al. supplementary material
Wang et al. supplementary material 1

 Word (19 KB)
19 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed