Skip to main content Accessibility help

Genetic influences on hormonal markers of chronic hypothalamic–pituitary–adrenal function in human hair

  • E. M. Tucker-Drob (a1) (a2), A. D. Grotzinger (a1), D. A. Briley (a3), L. E. Engelhardt (a1), F. D. Mann (a1), M. Patterson (a1), C. Kirschbaum (a4), E. K. Adam (a5), J. A. Church (a1), J. L. Tackett (a6) and K. P. Harden (a1) (a2)...
  • Please note a correction has been issued for this article.



Cortisol is the primary output of the hypothalamic–pituitary–adrenal (HPA) axis and is central to the biological stress response, with wide-ranging effects on psychiatric health. Despite well-studied biological pathways of glucocorticoid function, little attention has been paid to the role of genetic variation. Conventional salivary, urinary and serum measures are strongly influenced by diurnal variation and transient reactivity. Recently developed technology can be used to measure cortisol accumulation over several months in hair, thus indexing chronic HPA function.


In a socio-economically diverse sample of 1070 twins/multiples (ages 7.80–19.47 years) from the Texas Twin Project, we estimated effects of sex, age and socio-economic status (SES) on hair concentrations of cortisol and its inactive metabolite, cortisone, along with their interactions with genetic and environmental factors. This is the first genetic study of hair neuroendocrine concentrations and the largest twin study of neuroendocrine concentrations in any tissue type.


Glucocorticoid concentrations increased with age for females, but not males. Genetic factors accounted for approximately half of the variation in cortisol and cortisone. Shared environmental effects dissipated over adolescence. Higher SES was related to shallower increases in cortisol with age. SES was unrelated to cortisone, and did not significantly moderate genetic effects on either cortisol or cortisone.


Genetic factors account for sizable proportions of glucocorticoid variation across the entire age range examined, whereas shared environmental influences are modest, and only apparent at earlier ages. Chronic glucocorticoid output appears to be more consistently related to biological sex, age and genotype than to experiential factors that cluster within nuclear families.


Corresponding author

*Address for correspondence: E. M. Tucker-Drob, Ph.D., The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-0187, USA. (Email:


Hide All
Adam, EK, Kumari, M (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology 34, 14231436.
Akaike, H (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716723.
Bartels, M, Van den Berg, M, Sluyter, F, Boomsma, DI, de Geus, EJC (2003). Heritability of cortisol levels: review and simultaneous analysis of twin studies. Psychoneuroendocrinology 28, 121137.
Bemmels, HR, Burt, SA, Legrand, LN, Iacono, WG, McGue, M (2008). The heritability of life events: an adolescent twin and adoption study. Twin Research and Human Genetics 11, 257265.
Bolton, JL, Hayward, C, Direk, N, Lewis, JG, Hammond, GL, Hill, LA, Anderson, A, Huffman, J, Wilson, JF, Campbell, H, Rudan, I (2014). Genome wide association identifies common variants at the SERPINA6/SERPINA1 locus influencing plasma cortisol and corticosteroid binding globulin. PLoS Genetics 10, e1004474.
Bosma, H, Golsteyn, B, Groffen, D, Schils, T, Stalder, T, Syurina, E, Borghans, L, Feron, F (2015). The socioeconomic patterning of perceived stress and hair cortisol in Dutch 10–12 year olds. Journal of Public Health and Epidemiology 4, 195197.
Briley, DA, Harden, KP, Bates, TC, Tucker-Drob, EM (2015). Nonparametric estimates of gene × environment interaction using local structural equation modeling. Behavior Genetics 45, 581596.
Chrousos, GP (1995). Stress: Basic Mechanisms and Clinical Implications. Academy of Sciences: New York.
Cole, SW (2010). Elevating the perspective on human stress genomics. Psychoneuroendocrinology 35, 955962.
Desantis, AS, Kuzawa, CW, Adam, EK (2015). Developmental origins of flatter cortisol rhythms: socioeconomic status and adult cortisol activity. American Journal of Human Biology 27, 458467.
Dettenborn, L, Muhtz, C, Skoluda, N, Stalder, T, Steudte, S, Hinkelmann, K, Kirschbaum, C, Otte, C (2012). Introducing a novel method to assess cumulative steroid concentrations: increased hair cortisol concentrations over 6 months in medicated patients with depression. Stress 15, 348353.
Dowd, JB, Simanek, AM, Aiello, AE (2009). Socio-economic status, cortisol and allostatic load: a review of the literature. International Journal of Epidemiology 38, 12971309.
Feller, S, Vigl, M, Bergmann, MM, Boeing, H, Kirschbaum, C, Stalder, T (2014). Predictors of hair cortisol concentrations in older adults. Psychoneuroendocrinology 39, 132140.
Frodl, T, O'Keane, V (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiology of Disease 52, 2437.
Gao, W, Kirschbaum, C, Grass, J, Stalder, T (2015). LC–MS based analysis of endogenous steroid hormones in human hair. Journal of Steroid Biochemistry and Molecular Biology 162, 9299.
Hankin, BL, Abramson, LY, Moffitt, TE, Silva, PA, McGee, R, Angell, KE (1998). Development of depression from preadolescence to young adulthood: emerging gender differences in a 10-year longitudinal study. Journal of Abnormal Psychology 107, 128140.
Harden, KP, Tucker-Drob, EM, Tackett, JL (2013). The Texas Twin Project. Twin Research and Human Genetics 16, 385390.
Heath, AC, Nyholt, DR, Neuman, R, Madden, PA, Bucholz, KK, Todd, RD, Nelson, EC, Montgomery, GW, Martin, NG (2003). Zygosity diagnosis in the absence of genotypic data: an approach using latent class analysis. Twin Research 6, 2226.
Heim, C, Newport, DJ, Mletzko, T, Miller, AH, Nemeroff, CB (2008). The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33, 693710.
Ising, M, Holsboer, F (2006). Genetics of stress response and stress-related disorders. Dialogues in Clinical Neuroscience 8, 433444.
Jocklin, V, McGue, M, Lykken, DT (1996). Personality and divorce: a genetic analysis. Journal of Personality and Social Psychology 71, 288299.
Kendler, KS, Chen, X, Dick, D, Maes, H, Gillespie, N, Neale, MC, Riley, B (2012). Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nature Neuroscience 15, 181189.
Kupper, N, de Geus, EJC, van den Berg, M, Kirschbaum, C, Boomsma, DI, Willemsen, G (2005). Familial influences on basal salivary cortisol in an adult population. Psychoneuroendocrinology 30, 857868.
Lupien, SJ, McEwen, BS, Gunnar, MR, Heim, C (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience 10, 434445.
McCormick, CM, Mathews, IZ (2007). HPA function in adolescence: role of sex hormones in its regulation and the enduring consequences of exposure to stressors. Pharmacology, Biochemistry, and Behavior 86, 220233.
Meaney, MJ (2003). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience 24, 11611192.
Miller, GE, Chen, E, Zhou, ES (2007). If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychological Bulletin 133, 2545.
Monroe, SM, Simons, AD (1991). Diathesis–stress theories in the context of life stress research: implications for the depressive disorders. Psychological Bulletin 110, 406425.
Muthén, LK, Muthén, BO (1998). Mplus: The Comprehensive Modeling Program for Applied Researchers. Muthén & Muthén: Los Angeles, CA.
Natsuaki, MN, Klimes-Dougan, B, Ge, X, Shirtcliff, EA, Hastings, PD, Zahn-Waxler, C (2009). Early pubertal maturation and internalizing problems in adolescence: sex differences in the role of cortisol reactivity to interpersonal stress. Journal of Clinical Child and Adolescent Psychology 38, 513524.
Purcell, S (2002). Variance components models for gene–environment interaction in twin analysis. Twin Research 5, 554571.
Quinkler, M, Stewart, PM (2013). Hypertension and the cortisol–cortisone shuttle. Journal of Clinical Endocrinology and Metabolism 88, 23842392.
Redei, EE (2009). Molecular genetics of the stress–responsive adrenocortical axis. Annals of Medicine 40, 139148.
Rietveld, MJH, van Der Valk, JC, Bongers, IL, Stroet, TM, Slagboom, PE, Boomsma, DI (2000). Zygosity diagnosis in young twins by parental report. Twin Research 3, 134141.
Rippe, RC, Noppe, G, Windhorst, DA, Tiemeier, H, van Rossum, EF, Jaddoe, VW, Verhulst, FC, Bakermans-Kranenburg, MJ, van Ijendoorn, MH, van den Akker, EL (2016). Splitting hair for cortisol? Associations of socio-economic status, ethnicity, hair color, gender and other child characteristics with hair cortisol and cortisone. Psychoneuroendocrinology 66, 5664.
Russell, E, Kirschbaum, C, Laudenslager, ML, Stalder, T, de Rijke, Y, van Rossum, EF, van Uum, S, Koren, G (2015). Toward standardization of hair cortisol measurement: results of the first international interlaboratory round robin. Therapeutic Drug Monitoring 37, 7175.
Sapolsky, RM, Romero, LM, Munck, AU (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21, 5589.
Sariaslan, A, Fazel, S, D'onofrio, BM, Långström, N, Larsson, H, Bergen, SE, Kuja-Halkola, R, Lichtenstein, P (2016). Schizophrenia and subsequent neighborhood deprivation: revisiting the social drift hypothesis using population, twin and molecular genetic data. Translational Psychiatry 6, e796.
Satorra, A (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In Innovations in Multivariate Statistical Analysis (ed. Heijmans, DDH, Pollock, DSG and Satorra, A), pp. 233247. Springer, US: New York.
Sauvé, B, Koren, G, Walsh, G, Tokmakejian, S, Van Uum, SH (2007). Measurement of cortisol in human hair as a biomarker of systemic exposure. Clinical and Investigative Medicine 30, 183191.
Serwinski, B, Salavecz, G, Kirschbaum, C, Steptoe, A (2016). Associations between hair cortisol concentration, income, income dynamics and status incongruity in healthy middle-aged women. Psychoneuroendocrinology 67, 182188.
Short, SJ, Stalder, T, Marceau, K, Entringer, S, Moog, NK, Shirtcliff, EA, Wadhwa, PD, Buss, C (2016). Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology 71, 1218.
Stalder, T, Kirschbaum, C (2012). Analysis of cortisol in hair – state of the art and future directions. Brain 26, 10191029.
Stalder, T, Kirschbaum, C, Kudielka, BM, Adam, EK, Pruessner, JC, Wüst, S, Dockrya, S, Smyth, N, Evans, P, Hellhammer, DH, Miller, R (2016). Assessment of the cortisol awakening response: expert consensus guidelines. Psychoneuroendocrinology 63, 414432.
Stalder, T, Steudte, S, Miller, R, Skoluda, N, Dettenborn, L, Kirschbaum, C (2012). Intraindividual stability of hair cortisol concentrations. Psychoneuroendocrinology 37, 602610.
Staufenbiel, SM, Andela, CD, Manenschijn, L, Pereira, AM, van Rossum, EF, Biermasz, NR (2015). Increased hair cortisol concentrations and BMI in patients with pituitary–adrenal disease on hydrocortisone replacement. Journal of Clinical Endocrinology and Metabolism 100, 24562462.
Staufenbiel, SM, Penninx, BWJH, Spijker, AT, Elzinga, BM, van Rossum, EFC (2013). Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology 38, 12201235.
Stewart, PM, Boulton, A, Kumar, S, Clark, PM, Shackleton, CH (1999). Cortisol metabolism in human obesity: impaired cortisone→ cortisol conversion in subjects with central adiposity. Journal of Clinical Endocrinology and Metabolism 84, 10221027.
Stratakis, CA, Chrousos, GP (1995). Neuroendocrinology and pathophysiology of the stress system. Annals of the New York Academy of Sciences 771, 118.
Stratakis, CA, Sarlis, NJ, Berrettini, WH, Badner, JA, Chrousos, GP, Gershon, ES, Detera-Wadleigh, SD (1997). Lack of linkage between the corticotropin-releasing hormone (CRH) gene and bipolar affective disorder. Molecular Psychiatry 2, 483485.
Vaghri, Z, Guhn, M, Weinberg, J, Grunau, RE, Yu, W, Hertzman, C (2013). Hair cortisol reflects socio-economic factors and hair zinc in preschoolers. Psychoneuroendocrinology 38, 331340.
Van Hulle, CA, Shirtcliff, EA, Lemery-Chalfant, K, Goldsmith, HH (2012). Genetic and environmental influences on individual differences in cortisol level and circadian rhythm in middle childhood. Hormones and Behavior 62, 3642.
Velders, FP, Kuningas, M, Kumari, M, Dekker, MJ, Uitterlinden, AG, Kirschbaum, C, Hek, K, Hofman, A, Verhulst, FC, Kivimaki, M, Van Duijn, CM (2011). Genetics of cortisol secretion and depressive symptoms: a candidate gene and genome wide association approach. Psychoneuroendocrinology 36, 10531061.
Viau, V, Meaney, MJ (1991). Variations in the hypothalamic–pituitary–adrenal response to stress during the estrous cycle in the rat. Endocrinology 129, 25032511.
Vliegenthart, J, Noppe, G, van Rossum, EFC, Koper, JW, Raat, H, van den Akker, ELT (2016). Socioeconomic status in children is associated with hair cortisol levels as a biological measure of chronic stress. Psychoneuroendocrinology 65, 914.
Vrshek-Schallhorn, S, Doane, LD, Mineka, S, Zinbarg, RE, Craske, MG, Adam, EK (2012). The cortisol awakening response predicts major depression: predictive stability over a 4-year follow-up and effect of depression history. Psychological Medicine 43, 483493.
Xie, Q, Gao, W, Li, J, Qiao, T, Jin, J, Deng, H, Lu, Z (2011). Correlation of cortisol in 1-cm hair segment with salivary cortisol in human: hair cortisol as an endogenous biomarker. Clinical Chemistry and Laboratory Medicine 49, 20132019.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Tucker-Drob supplementary material
Tucker-Drob supplementary material 1

 Word (419 KB)
419 KB

Genetic influences on hormonal markers of chronic hypothalamic–pituitary–adrenal function in human hair

  • E. M. Tucker-Drob (a1) (a2), A. D. Grotzinger (a1), D. A. Briley (a3), L. E. Engelhardt (a1), F. D. Mann (a1), M. Patterson (a1), C. Kirschbaum (a4), E. K. Adam (a5), J. A. Church (a1), J. L. Tackett (a6) and K. P. Harden (a1) (a2)...
  • Please note a correction has been issued for this article.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: