Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T11:35:10.448Z Has data issue: false hasContentIssue false

Expression quantitative trait loci (eQTLs) in microRNA genes are enriched for schizophrenia and bipolar disorder association signals

Published online by Cambridge University Press:  30 March 2015

V. S. Williamson*
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
M. Mamdani
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
G. O. McMichael
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
A. H. Kim
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
D. Lee
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA
S. Bacanu
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA Department of Psychiatry, Virginia Commonwealth University, VA, USA
V. I. Vladimirov*
Affiliation:
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA Department of Psychiatry, Virginia Commonwealth University, VA, USA Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, VA, USA Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, USA
*
*Address for correspondence: V. S. Williamson, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA. (Email: vswilliamson@vcu.edu) [V.S.W.] (Email: vivladimirov@vcu.edu) [V.I.V.]
*Address for correspondence: V. S. Williamson, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA, USA. (Email: vswilliamson@vcu.edu) [V.S.W.] (Email: vivladimirov@vcu.edu) [V.I.V.]

Abstract

Background

Schizophrenia (SZ) and bipolar disorder (BD) have substantial negative impact on the quality of human life. Both, microRNA (miRNA) expression profiling in SZ and BD postmortem brains [and genome-wide association studies (GWAS)] have implicated miRNAs in disease etiology. Here, we aim to determine whether significant GWAS signals observed in the Psychiatric Genetic Consortium (PGC) are enriched for miRNAs.

Method

A two-stage approach was used to determine whether association signals from PGC affect miRNAs: (i) statistical assessment of enrichment using a Simes test and sum of squares test (SST) and (ii) biological evidence that quantitative trait loci (eQTL) mapping to known miRNA genes affect their expression in an independent sample of 78 postmortem brains from the Stanley Medical Research Institute.

Results

A total of 2567 independent single nucleotide polymorphisms (SNPs) (R2 > 0.8) were mapped locally, within 1 Mb, to all known miRNAs (miRBase v. 21). We show robust enrichment for SZ- and BD-related SNPs with miRNAs using Simes (SZ: p ≤ 0.0023, BD: p ≤ 0.038), which remained significant after adjusting for background inflation in SZ (empirical p = 0.018) and approached significance in BD (empirical p = 0.07). At a false discovery rate of 10%, we identified a total of 32 eQTLs to influence miRNA expression; 11 of these overlapped with BD.

Conclusions

Our approach of integrating PGC findings with eQTL results can be used to generate specific hypotheses regarding the role of miRNAs in SZ and BD.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adzhubei, I, Jordan, DM, Sunyaev, SR (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, 76, 7.20.1–7.20.41.CrossRefGoogle Scholar
Akerblom, M, Sachdeva, R, Barde, I, Verp, S, Gentner, B, Trono, D, Jakobsson, J (2012). MicroRNA-124 is a subventricular zone neuronal fate determinant. Journal of Neuroscience 32, 88798889.CrossRefGoogle ScholarPubMed
Bacanu, SA, Chen, J, Sun, J, Richardson, K, Lai, CQ, Zhao, Z, O'Donovan, MC, Kendler, KS, Chen, X (2014). Functional SNPs are enriched for schizophrenia association signals. Molecular Psychiatry 19, 276277.Google Scholar
Banerjee, S, Neveu, P, Kosik, KS (2009). A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64, 871884.Google Scholar
Barnes, A, Isohanni, M, Barnett, JH, Pietilainen, O, Veijola, J, Miettunen, J, Paunio, T, Tanskanen, P, Ridler, K, Suckling, J, Bullmore, ET, Jones, PB, Murray, GK (2012). Neuregulin-1 genotype is associated with structural differences in the normal human brain. Neuroimage 59, 20572061.Google Scholar
Bavamian, S, Mellios, N, Lalonde, J, Fass, DM, Wang, J, Sheridan, SD, Madison, JM, Zhou, F, Rueckert, EH, Barker, D, Perlis, RH, Sur, M, Haggarty, SJ (2015). Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Molecular Psychiatry Published online: 27 January 2015. doi:10.1038/mp.2014.176.Google Scholar
Bazzoni, F, Rossato, M, Fabbri, M, Gaudiosi, D, Mirolo, M, Mori, L, Tamassia, N, Mantovani, A, Cassatella, MA, Locati, M (2009). Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings of the National Academy Sciences USA 106, 52825287.Google Scholar
Benjamini, Y, Hochberg, Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289300.Google Scholar
Betel, D, Koppal, A, Agius, P, Sander, C, Leslie, C (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology 11, R90.Google Scholar
Beveridge, NJ, Tooney, PA, Carroll, AP, Gardiner, E, Bowden, N, Scott, RJ, Tran, N, Dedova, I, Cairns, MJ (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics 17, 11561168.CrossRefGoogle ScholarPubMed
Blin, K, Dieterich, C, Wurmus, R, Rajewsky, N, Landthaler, M, Akalin, A (2015). DoRiNA 2.0-upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Research 43, D160D167.Google Scholar
Borchert, GM, Lanier, W, Davidson, BL (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology 13, 10971101.CrossRefGoogle ScholarPubMed
Bridges, TM, Lindsley, CW (2008). G-protein-coupled receptors: from classical modes of modulation to allosteric mechanisms. ACS Chemical Biology 3, 530541.Google Scholar
Collins, AL, Kim, Y, Bloom, RJ, Kelada, SN, Sethupathy, P, Sullivan, PF (2014). Transcriptional targets of the schizophrenia risk gene MIR137. Translational Psychiatry 4, e404.Google Scholar
de Baumont, A, Maschietto, M, Lima, L, Carraro, DM, Olivieri, EH, Fiorini, A, Barreta, LA, Palha, JA, Belmonte-de-Abreu, P, Moreira Filho, CA, Brentani, H (2015). Innate immune response is differentially dysregulated between bipolar disease and schizophrenia. Schizophrenia Research 161, 215221.Google Scholar
Deng, C, Pan, B, Engel, M, Huang, XF (2013). Neuregulin-1 signalling and antipsychotic treatment: potential therapeutic targets in a schizophrenia candidate signalling pathway. Psychopharmacology (Berlin) 226, 201215.Google Scholar
Down, TA, Hubbard, TJ (2002). Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Research 12, 458461.CrossRefGoogle ScholarPubMed
Dweep, H, Sticht, C, Pandey, P, Gretz, N (2011). miRWalk – database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. Journal of Biomedical Informatics 44, 839847.CrossRefGoogle ScholarPubMed
Feng, J, Sun, G, Yan, J, Noltner, K, Li, W, Buzin, CH, Longmate, J, Heston, LL, Rossi, J, Sommer, SS (2009). Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One 4, e6121.CrossRefGoogle ScholarPubMed
Filipowicz, W, Bhattacharyya, SN, Sonenberg, N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics 9, 102114.Google Scholar
Fish, JE, Wythe, JD, Xiao, T, Bruneau, BG, Stainier, DY, Srivastava, D, Woo, S (2011). A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 138, 14091419.CrossRefGoogle ScholarPubMed
Forero, DA, van der Ven, K, Callaerts, P, Del-Favero, J (2010). miRNA genes and the brain: implications for psychiatric disorders. Human Mutation 31, 11951204.CrossRefGoogle ScholarPubMed
Funk, AJ, Haroutunian, V, Meador-Woodruff, JH, McCullumsmith, RE (2014). Increased G protein-coupled receptor kinase (GRK) expression in the anterior cingulate cortex in schizophrenia. Schizophrenia Research 159, 130135.CrossRefGoogle ScholarPubMed
Gamazon, ER, Badner, JA, Cheng, L, Zhang, C, Zhang, D, Cox, NJ, Gershon, ES, Kelsoe, JR, Greenwood, TA, Nievergelt, CM, Chen, C, McKinney, R, Shilling, PD, Schork, NJ, Smith, EN, Bloss, CS, Nurnberger, JI, Edenberg, HJ, Foroud, T, Koller, DL, Scheftner, WA, Coryell, W, Rice, J, Lawson, WB, Nwulia, EA, Hipolito, M, Byerley, W, McMahon, FJ, Schulze, TG, Berrettini, WH, Potash, JB, Zandi, PP, Mahon, PB, McInnis, MG, Zöllner, S, Zhang, P, Craig, DW, Szelinger, S, Barrett, TB, Liu, C (2013 a). Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. Molecular Psychiatry 18, 340346.CrossRefGoogle ScholarPubMed
Gamazon, ER, Innocenti, F, Wei, R, Wang, L, Zhang, M, Mirkov, S, Ramírez, J, Huang, RS, Cox, NJ, Ratain, MJ, Liu, W (2013 b). A genome-wide integrative study of microRNAs in human liver. BMC Genomics 14, 395.CrossRefGoogle ScholarPubMed
Gamazon, ER, Ziliak, D, Im, HK, LaCroix, B, Park, DS, Cox, NJ, Huang, RS (2012). Genetic architecture of microRNA expression: implications for the transcriptome and complex traits. American Journal of Human Genetics 90, 10461063.Google Scholar
Geaghan, M, Cairns, MJ (2014). MicroRNA and Posttranscriptional Dysregulation in Psychiatry. Biological Psychiatry.Google Scholar
Grimson, A, Farh, KK, Johnston, WK, Garrett-Engele, P, Lim, LP, Bartel, DP (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell 27, 91105.Google Scholar
Gromak, N (2012). Intronic microRNAs: a crossroad in gene regulation. Biochemical Society Transactions 40, 759761.Google Scholar
Guo, AY, Sun, J, Jia, P, Zhao, Z (2010). A Novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC System Biology 4, 10.Google Scholar
Hansen, T, Olsen, L, Lindow, M, Jakobsen, KD, Ullum, H, Jonsson, E, Andreassen, OA, Djurovic, S, Melle, I, Agartz, I, Hall, H, Timm, S, Wang, AG, Werge, T (2007). Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2, e873.Google Scholar
Hinze-Selch, D (2002). Infection, treatment and immune response in patients with bipolar disorder versus patients with major depression, schizophrenia or healthy controls. Bipolar Disorders 4 (Suppl. 1), 8183.Google Scholar
Hsu, SD, Chu, CH, Tsou, AP, Chen, SJ, Chen, HC, Hsu, PW, Wong, YH, Chen, YH, Chen, GH, Huang, HD (2008). miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Research 36, D165D169.Google Scholar
Hunsberger, JG, Fessler, EB, Chibane, FL, Leng, Y, Maric, D, Elkahloun, AG, Chuang, DM (2013). Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. American Journal of Translational Research 5, 450464.Google Scholar
Jiang, J, Jia, P, Shen, B, Zhao, Z (2014). Top associated SNPs in prostate cancer are significantly enriched in cis-expression quantitative trait loci and at transcription factor binding sites. Oncotarget 5, 61686177.Google Scholar
Kelder, T, van Iersel, MP, Hanspers, K, Kutmon, M, Conklin, BR, Evelo, CT, Pico, AR (2012). WikiPathways: building research communities on biological pathways. Nucleic Acids Research 40, D1301D1307.CrossRefGoogle ScholarPubMed
Kertesz, M, Iovino, N, Unnerstall, U, Gaul, U, Segal, E (2007). The role of site accessibility in microRNA target recognition. Nature Genetics 39, 12781284.Google Scholar
Kim, AH, Parker, EK, Williamson, V, McMichael, GO, Fanous, AH, Vladimirov, VI (2012). Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137. Schizophrenia Research 141, 6064.Google Scholar
Kim, AH, Reimers, M, Maher, B, Williamson, V, McMichael, O, McClay, JL, van den Oord, EJ, Riley, BP, Kendler, KS, Vladimirov, VI (2010). MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophrenia Research 124, 183191.CrossRefGoogle ScholarPubMed
Kim, S, Webster, MJ (2010). The stanley neuropathology consortium integrative database: a novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markers. Neuropsychopharmacology 35, 473482.Google Scholar
Kozomara, A, Griffiths-Jones, S (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 42, D68D73.CrossRefGoogle ScholarPubMed
Krek, A, Grun, D, Poy, MN, Wolf, R, Rosenberg, L, Epstein, EJ, MacMenamin, P, da Piedade, I, Gunsalus, KC, Stoffel, M, Rajewsky, N (2005). Combinatorial microRNA target predictions. Nature Genetics 37, 495500.Google Scholar
Kwon, E, Wang, W, Tsai, LH (2013). Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Molecular Psychiatry 18, 1112.Google Scholar
Lai, CY, Yu, SL, Hsieh, MH, Chen, CH, Chen, HY, Wen, CC, Huang, YH, Hsiao, PC, Hsiao, CK, Liu, CM, Yang, PC, Hwu, HG, Chen, WJ (2011). MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One 6, e21635.Google Scholar
Li, Y, Liang, C, Easterbrook, S, Luo, J, Zhang, Z (2014). Investigating the functional implications of reinforcing feedback loops in transcriptional regulatory networks. Molecular Biosystems 10, 32383248.Google Scholar
Liu, C, Teng, ZQ, McQuate, AL, Jobe, EM, Christ, CC, von Hoyningen-Huene, SJ, Reyes, MD, Polich, ED, Xing, Y, Li, Y, Guo, W, Zhao, X (2013). An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation. PLoS One 8, e51436.Google Scholar
Lize, M, Pilarski, S, Dobbelstein, M (2010). E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death and Differentiation 17, 452458.Google Scholar
Maragkakis, M, Vergoulis, T, Alexiou, P, Reczko, M, Plomaritou, K, Gousis, M, Kourtis, K, Koziris, N, Dalamagas, T, Hatzigeorgiou, AG (2011). DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association. Nucleic Acids Research 39, W145W148.Google Scholar
McCullumsmith, RE, Hammond, JH, Shan, D, Meador-Woodruff, JH (2014). Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 39, 6587.Google Scholar
McGrath, J, Saha, S, Chant, D, Welham, J (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiological Reviews 30, 6776.Google Scholar
Miller, BH, Zeier, Z, Xi, L, Lanz, T, Deng, S, , Strathmann, J, Willoughby, D, Kenny, P, Elsworth, J, Lawrence, M, Roth, R, Edbauer, D, Kleiman, R, Wahlested, C (2013). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National Academy of Sciences of the United States of America 109, 31253130.Google Scholar
Monteys, AM, Spengler, RM, Wan, J, Tecedor, L, Lennox, KA, Xing, Y, Davidson, BL (2010). Structure and activity of putative intronic miRNA promoters. RNA 16, 495505.CrossRefGoogle ScholarPubMed
Moreau, MP, Bruse, SE, Jornsten, R, Liu, Y, Brzustowicz, LM (2013). Chronological changes in microRNA expression in the developing human brain. PLoS One 8, e60480.Google Scholar
Nagano, T, Namba, H, Abe, Y, Aoki, H, Takei, N, Nawa, H (2007). In vivo administration of epidermal growth factor and its homologue attenuates developmental maturation of functional excitatory synapses in cortical GABAergic neurons. European Journal of Neuroscience 25, 380390.Google Scholar
Nawaz, R, Asif, H, Khan, A, Ishtiaq, H, Shad, F, Siddiqui, S (2014). Drugs targeting SNPrs35753505 of the NRG1 gene may prevent the association of neurological disorder schizophrenia in a Pakistani population. CNS Neurolologial Disorders and Drug Targets 13, 16041614.Google Scholar
Nicolae, DL, Gamazon, E, Zhang, W, Duan, S, Dolan, ME, Cox, NJ (2010). Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genetics 6, e1000888.Google Scholar
Olsen, L, Klausen, M, Helboe, L, Nielsen, FC, Werge, T (2009). MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats. PLoS ONE 4, e7225.Google Scholar
Ozsolak, F, Poling, LL, Wang, Z, Liu, H, Liu, XS, Roeder, RG, Zhang, X, Song, JS, Fisher, DE (2008). Chromatin structure analyses identify miRNA promoters. Genes and Development 22, 31723183.Google Scholar
Paraskevopoulou, MD, Georgakilas, G, Kostoulas, N, Vlachos, IS, Vergoulis, T, Reczko, M, Filippidis, C, Dalamagas, T, Hatzigeorgiou, AG (2013). DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Research 41, W169W173.Google Scholar
Perkins, DO, Jeffries, CD, Jarskog, LF, Thomson, JM, Woods, K, Newman, MA, Parker, JS, Jin, JP, Hammond, SM (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology 8, 11.CrossRefGoogle ScholarPubMed
Petri, R, Malmevik, J, Fasching, L, Akerblom, M, Jakobsson, J (2014). miRNAs in brain development. Experimental Cell Research 321, 8489.Google Scholar
Pietersen, CY, Mauney, SA, Kim, SS, Lim, MP, Rooney, RJ, Goldstein, JM, Petryshen, TL, Seidman, LJ, Shenton, ME, McCarley, RW, Sonntag, KC, Woo, TU (2014). Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. Journal of Neurogenetics 28, 5369.Google Scholar
Pio, G, Malerba, D, D'Elia, D, Ceci, M (2014). Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach. BMC Bioinformatics 15 (Suppl. 1), S4.Google Scholar
Psychiatric Genetics Consortium (PGC) (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics 43, 969976.Google Scholar
Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, MA, Bender, D, Maller, J, Sklar, P, de Bakker, PI, Daly, MJ, Sham, PC (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81, 559575.CrossRefGoogle ScholarPubMed
Ramalingam, P, Palanichamy, JK, Singh, A, Das, P, Bhagat, M, Kassab, MA, Sinha, S, Chattopadhyay, P (2014). Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 20, 7687.Google Scholar
Ramasamy, A, Trabzuni, D, Guelfi, S, Varghese, V, Smith, C, Walker, R, De, T, Coin, L, de Silva, R, Cookson, MR, Singleton, AB, Hardy, J, Ryten, M, Weale, ME (2014). Genetic variability in the regulation of gene expression in ten regions of the human brain. Nature Neuroscience 17, 14181428.CrossRefGoogle ScholarPubMed
Rehmsmeier, M, Steffen, P, Hochsmann, M, Giegerich, R (2004). Fast and effective prediction of microRNA/target duplexes. RNA 10, 15071517.Google Scholar
Richards, AL, Jones, L, Moskvina, V, Kirov, G, Gejman, PV, Levinson, DF, Sanders, AR, Purcell, S, Visscher, PM, Craddock, N, Owen, MJ, Holmans, P, O'Donovan, MC (2012). Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Molecular Psychiatry 17, 193201.CrossRefGoogle ScholarPubMed
Ripke, S, Neale, BM, Corvin, A, Walters, JTR, Farh, K-H, Holmans, PA et al. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421427.Google Scholar
Ripke, S, O'Dushlaine, C, Chambert, K, Moran, JL, Kahler, AK, Akterin, S, Bergen, SE, Collins, AL, Crowley, JJ, Fromer, M, Kim, Y, Lee, SH, Magnusson, PK, Sanchez, N, Stahl, EA, Williams, S, Wray, NR, Xia, K, Bettella, F, Borglum, AD, Bulik-Sullivan, BK, Cormican, P, Craddock, N, de Leeuw, C, Durmishi, N, Gill, M, Golimbet, V, Hamshere, ML, Holmans, P, Hougaard, DM, Kendler, KS, Lin, K, Morris, DW, Mors, O, Mortensen, PB, Neale, BM, O'Neill, FA, Owen, MJ, Milovancevic, MP, Posthuma, D, Powell, J, Richards, AL, Riley, BP, Ruderfer, D, Rujescu, D, Sigurdsson, E, Silagadze, T, Smit, AB, Stefansson, H, Steinberg, S, Suvisaari, J, Tosato, S, Verhage, M, Walters, JT, Levinson, DF, Gejman, PV, Kendler, KS, Laurent, C, Mowry, BJ, O'Donovan, MC, Owen, MJ, Pulver, AE, Riley, BP, Schwab, SG, Wildenauer, DB, Dudbridge, F, Holmans, P, Shi, J, Albus, M, Alexander, M, Campion, D, Cohen, D, Dikeos, D, Duan, J, Eichhammer, P, Godard, S, Hansen, M, Lerer, FB, Liang, KY, Maier, W, Mallet, J, Nertney, DA, Nestadt, G, Norton, N, O'Neill, FA, Papadimitriou, GN, Ribble, R, Sanders, AR, Silverman, JM, Walsh, D, Williams, NM, Wormley, B, Arranz, MJ, Bakker, S, Bender, S, Bramon, E, Collier, D, Crespo-Facorro, B, Hall, J, Iyegbe, C, Jablensky, A, Kahn, RS, Kalaydjieva, L, Lawrie, S, Lewis, CM, Lin, K, Linszen, DH, Mata, I, McIntosh, A, Murray, RM, Ophoff, RA, Powell, J, Rujescu, D, Van Os, J, Walshe, M, Weisbrod, M, Wiersma, D, Donnelly, P, Barroso, I, Blackwell, JM, Bramon, E, Brown, MA, Casas, JP, Corvin, AP, Deloukas, P, Duncanson, A, Jankowski, J, Markus, HS, Mathew, CG, Palmer, CN, Plomin, R, Rautanen, A, Sawcer, SJ, Trembath, RC, Viswanathan, AC, Wood, NW, Spencer, CC, Band, G, Bellenguez, C, Freeman, C, Hellenthal, G, Giannoulatou, E, Pirinen, M, Pearson, RD, Strange, A, Su, Z, Vukcevic, D, Donnelly, P, Langford, C, Hunt, SE, Edkins, S, Gwilliam, R, Blackburn, H, Bumpstead, SJ, Dronov, S, Gillman, M, Gray, E, Hammond, N, Jayakumar, A, McCann, OT, Liddle, J, Potter, SC, Ravindrarajah, R, Ricketts, M, Tashakkori-Ghanbaria, A, Waller, MJ, Weston, P, Widaa, S, Whittaker, P, Barroso, I, Deloukas, P, Mathew, CG, Blackwell, JM, Brown, MA, Corvin, AP, McCarthy, MI, Spencer, CC, Bramon, E, Corvin, AP, O'Donovan, MC, Stefansson, K, Scolnick, E, Purcell, S, McCarroll, SA, Sklar, P, Hultman, CM, Sullivan, PF (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics 45, 11501159.Google Scholar
Roussos, P, Mitchell, AC, Voloudakis, G, Fullard, JF, Pothula, VM, Tsang, J, Stahl, EA, Georgakopoulos, A, Ruderfer, DM, Charney, A, Okada, Y, Siminovitch, KA, Worthington, J, Padyukov, L, Klareskog, L, Gregersen, PK, Plenge, RM, Raychaudhuri, S, Fromer, M, Purcell, SM, Brennand, KJ, Robakis, NK, Schadt, EE, Akbarian, S, Sklar, P (2014). A role for noncoding variation in schizophrenia. Cell Reports 9, 14171429.CrossRefGoogle ScholarPubMed
Saini, HK, Griffiths-Jones, S, Enright, AJ (2007). Genomic analysis of human microRNA transcripts. Proceedings of the National Academy of Science USA 104, 1771917724.Google Scholar
Santarelli, DM, Beveridge, NJ, Tooney, PA, Cairns, MJ (2011). Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biological Psychiatry 69, 180187.Google Scholar
Shabalin, AA (2012). Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 13531358.Google Scholar
Shenoy, A, Blelloch, RH (2014). Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nature Reviews Molecular Cell Biology 15, 565576.Google Scholar
Stranger, BE, Montgomery, SB, Dimas, AS, Parts, L, Stegle, O, Ingle, CE, Sekowska, M, Smith, GD, Evans, D, Gutierrez-Arcelus, M, Price, A, Raj, T, Nisbett, J, Nica, AC, Beazley, C, Durbin, R, Deloukas, P, Dermitzakis, ET (2012). Patterns of cis regulatory variation in diverse human populations. PLoS Genetics 8, e1002639.Google Scholar
Sun, G, Ye, P, Murai, K, Lang, MF, Li, S, Zhang, H, Li, W, Fu, C, Yin, J, Wang, A, Ma, X, Shi, Y (2011). miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nature Communications 2, 529.Google Scholar
Sun, XY, Lu, J, Zhang, L, Song, HT, Zhao, L, Fan, HM, Zhong, AF, Niu, W, Guo, ZM, Dai, YH, Chen, C, Ding, YF, Zhang, LY (2015). Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. Journal of Clinical Neuroscience 22, 570574.Google Scholar
Tsang, JS, Ebert, MS, van Oudenaarden, A (2010). Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Molecular Cell 38, 140153.Google Scholar
Umeda-Yano, S, Hashimoto, R, Yamamori, H, Okada, T, Yasuda, Y, Ohi, K, Fukumoto, M, Ito, A, Takeda, M (2013). The regulation of gene expression involved in TGF-beta signaling by ZNF804A, a risk gene for schizophrenia. Schizophrenia Research 146, 273278.Google Scholar
Vejnar, CE, Blum, M, Zdobnov, EM (2013). miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Research 41, W165W168.Google Scholar
Wang, X, El Naqa, IM (2008). Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24, 325332.Google Scholar
Wang, Z, Zhang, C, Huang, J, Yuan, C, Hong, W, Chen, J, Yu, S, Xu, L, Gao, K, Fang, Y (2014). MiRNA-206 and BDNF genes interacted in bipolar I disorder. Journal of Affective Disorders 162, 116119.Google Scholar
Westra, HJ, Franke, L (2014). From genome to function by studying eQTLs. Biochimica et Biophysica Acta 1842, 18961902.Google Scholar
Wilfred, BR, Wang, WX, Nelson, PT (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular Genetics and Metabolism 91, 209217.Google Scholar
Xu, Y, Li, F, Zhang, B, Zhang, K, Zhang, F, Huang, X, Sun, N, Ren, Y, Sui, M, Liu, P (2010). MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophrenia Research 119, 219227.Google Scholar
Xu, Z, Taylor, JA (2009). SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Research 37, W600W605.Google Scholar
Yu, S, Kim, J, Min, H, Yoon, S (2014). Ensemble learning can significantly improve human microRNA target prediction. Methods 69, 220229.Google Scholar
Zhang, X, Gierman, HJ, Levy, D, Plump, A, Dobrin, R, Goring, HH, Curran, JE, Johnson, MP, Blangero, J, Kim, SK, O'Donnell, CJ, Emilsson, V, Johnson, AD (2014). Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs. BMC Genomics 15, 532.Google Scholar
Zhang, Y, Verbeek, FJ (2010). Comparison and integration of target prediction algorithms for microRNA studies. Journal of Integrative Bioinformatics 7(3), 127.Google Scholar
Zhao, C, Sun, G, Li, S, Shi, Y (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural and Molecular Biology 16, 365371.Google Scholar
Supplementary material: File

Williamson supplementary material

Williamson supplementary material 1

Download Williamson supplementary material(File)
File 407.9 KB