Skip to main content Accessibility help
×
Home

Empirically determined severity levels for binge-eating disorder outperform existing severity classification schemes

  • Lauren N. Forrest (a1) (a2), Ross C. Jacobucci (a3) and Carlos M. Grilo (a1)

Abstract

Background

Eating-disorder severity indicators should theoretically index symptom intensity, impairment, and level of needed treatment. Two severity indicators for binge-eating disorder (BED) have been proposed (categories of binge-eating frequency and shape/weight overvaluation) but have mixed empirical support including modest clinical utility. This project uses structural equation model (SEM) trees – a form of exploratory data mining – to empirically determine the precise levels of binge-eating frequency and/or shape/weight overvaluation that most significantly differentiate BED severities.

Methods

Participants were 788 adults with BED enrolled in BED treatment studies. Participants completed interviews and self-report measures assessing eating-disorder and comorbid symptoms. SEM Tree analyses were performed by specifying an outcome model of BED severity and then recursively partitioning the outcome model into subgroups. Subgroups were split based on empirically determined values of binge-eating frequency and/or shape/weight overvaluation. SEM Forests also quantified which variable contributed more improvement in model fit.

Results

SEM Tree analyses yielded five subgroups, presented in ascending order of severity: overvaluation <1.25, overvaluation = 1.25–2.74, overvaluation = 2.75–4.24, overvaluation ⩾4.25 with weekly binge-eating frequency <4.875, and overvaluation ⩾4.25 with weekly binge-eating frequency ⩾4.875. SEM Forest analyses revealed that splits that occurred on shape/weight overvaluation resulted in much more improvement in model fit than splits that occurred on binge-eating frequency.

Conclusions

Shape/weight overvaluation differentiated BED severity more strongly than binge-eating frequency. Findings indicate a nuanced potential BED severity indicator scheme, based on a combination of cognitive and behavioral eating-disorder symptoms. These results inform BED classification and may allow for the provision of more specific and need-matched treatment formulations.

Copyright

Corresponding author

Author for correspondence: Lauren N. Forrest, E-mail: lauren.forrest@yale.edu

References

Hide All
Altman, D. G., & Royston, P. (2006). The cost of dichotomising continuous variables. British Medical Journal, 332(7549), 1080. doi: 10.1136/bmj.332.7549.1080.
American Psychiatric Association (2004). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.
Balodis, I. M., Grilo, C. M., & Potenza, M. N. (2015). Neurobiological features of binge eating disorder. CNS Spectrums, 20, 557565.
Beck, A. T., & Steer, R. A. (1987). Manual for the beck depression inventory. New York: Psychological Corporation.
Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., … Brandmaier, A. (2012). OpenMx 1.2 User Guide.
Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., … Fox, J. (2011). Openmx: An open source extended structural equation modeling framework. Psychometrika, 76(2), 306317. doi: 10.1007/s11336-010-9200-6.
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91121. doi: 10.1146/annurev-clinpsy-050212-185608.
Brandmaier, A. M., Oertzen, T. V., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees. Psychological Methods, 18, 7186. doi: 10.1037/a0030001.
Brandmaier, A. M., Prindle, J. J., McArdle, J. J., & Lindenberger, U. (2016). Theory-guided exploration with structural equation model forests. Psychological Methods, 21(4), 566582. doi: 10.1037/meth0000090.
Coffino, J. A., Udo, T., & Grilo, C. M. (2019). The significance of overvaluation of shape or weight in binge-eating disorder: Results from a national sample of U.S. adults. Obesity, 27(8), 13671371. doi: 10.1002/oby.22539.
Dakanalis, A., Colmegna, F., Riva, G., & Clerici, M. (2017a). Validity and utility of the DSM-5 severity specifier for binge-eating disorder. International Journal of Eating Disorders, 50(8), 917923. doi: 10.1002/eat.22696.
Dakanalis, A., Riva, G., Serino, S., Colmegna, F., & Clerici, M. (2017b). Classifying adults with binge eating disorder based on severity levels. European Eating Disorders Review, 25(4), 268274. doi: 10.1002/erv.2518.
DuBois, R. H., Rodgers, R. F., Franko, D. L., Eddy, K. T., & Thomas, J. J. (2017). A network analysis investigation of the cognitive-behavioral theory of eating disorders. Behaviour Research and Therapy, 97, 213221. doi: 10.1016/j.brat.2017.08.004.
Fairburn, C. G., & Cooper, Z. (1993). The eating disorder examination. In Fairburn, C. G. & Wilson, G. T. (Eds.), Binge eating: Nature, assessment, and treatment (pp. 317360). New York: Guilford Press.
Fairburn, C. G., Cooper, Z., & Shafran, R. (2003). Cognitive behaviour therapy for eating disorders: A “transdiagnostic” theory and treatment. Behaviour Research and Therapy, 41, 509528. doi: 10.1016/S0005-7967(02)00088-8.
Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Thousand Oaks, CA: SAGE Publications, Inc.
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997). Structured clinical interview for DSM-IV axis I disorders – patient edition (SCID-I/P, version 2.0). New York: New York State Psychiatric Institute.
Forrest, L. N., Jones, P., Ortiz, S. N., & Smith, A. R. (2018). Core psychopathology in anorexia nervosa and bulimia nervosa: A network analysis. International Journal of Eating Disorders, 51, 668679. doi: 10.1002/eat.22871.
Giannini, L., Roberto, C. A., Attia, E., Walsh, B. T., Thomas, J. J., Eddy, K. T., … Sysko, R. (2017). Mild, moderate, meaningful? Examining the psychological and functioning correlates of DSM-5 eating disorder severity specifiers. International Journal of Eating Disorders, 50, 906916. doi: 10.1002/eat.22728.
Goldschmidt, A. B., Hilbert, A., Manwaring, J. L., Wilfley, D. E., Pike, K. M., Fairburn, C. G., & Striegel-Moore, R. H. (2010). The significance of overvaluation of shape and weight in binge eating disorder. Behaviour Research and Therapy, 48(3), 187193. doi: 10.1016/j.brat.2009.10.008.
Grilo, C. M. (2013). Why no cognitive body image feature such as overvaluation of shape/weight in the binge eating disorder diagnosis? International Journal of Eating Disorders, 46(3), 208211. doi: 10.1002/eat.22082.
Grilo, C. M., Crosby, R. D., Peterson, C. B., Masheb, R. M., White, M. A., Crow, S. J., … Mitchell, J. E. (2010). Factor structure of the eating disorder examination interview in patients with binge-eating disorder. Obesity, 18(5), 977981. doi: 10.1038/oby.2009.321.
Grilo, C. M., Ivezaj, V., & White, M. A. (2015a). Evaluation of the DSM-5 severity indicator for binge eating disorder in a clinical sample. Behaviour Research and Therapy, 71, 110114. doi: 10.1016/j.brat.2015.05.003.
Grilo, C. M., Ivezaj, V., & White, M. A. (2015b). Evaluation of the DSM-5 severity indicator for binge eating disorder in a community sample. Behaviour Research and Therapy, 66, 7276. doi: 10.1016/j.brat.2015.01.004.
Grilo, C. M., Masheb, R. M., & Crosby, R. D. (2012). Predictors and moderators of response to cognitive behavioral therapy and medication for the treatment of binge eating disorder. Journal of Consulting and Clinical Psychology, 80(5), 897906.
Grilo, C. M., Masheb, R. M., & Wilson, G. T. (2001). Subtyping binge eating disorder. Journal of Consulting and Clinical Psychology, 69(6), 10661072.
Grilo, C. M., White, M. A., Gueroguieva, R., Wilson, G. T., & Masheb, R. M. (2013). Predictive significance of the overvaluation of shape/weight in obese patients with binge eating disorder: Findings from a randomized controlled trial with 12-month follow-up. Psychological Medicine, 43(6), 13351344. doi: 10.1017/S0033291712002097.
Haynos, A. F., Wang, S. B., Lipson, S., Peterson, C. B., Mitchell, J. E., Halmi, K. A., … Crow, S. J. (in press). Machine learning enhances prediction of illness course: A longitudinal study in eating disorders. Psychological Medicine.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 155. doi: 10.1080/10705519909540118.
Hudson, J. I., Hiripi, E., Pope, H. G., & Kessler, R. C. (2007). The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biological Psychiatry, 61(3), 348358. doi: 10.1016/j.biopsych.2006.03.040.
Kenny, T. E., & Carter, J. C. (2018). I weigh therefore I am: Implications of using different criteria to define overvaluation of shape and weight in binge-eating disorder. International Journal of Eating Disorders, 51(11), 12441251. doi: 10.1002/eat.22956.
King, M. W., & Resick, P. A. (2014). Data mining in psychological treatment research: A primer on classification and regression trees. Journal of Counseling and Clinical Psychology, 82(5), 895905. doi: 10.1037/a0035886.
Kober, H., & Boswell, R. G. (2018). Potential psychological and neural mechanisms in binge eating disorder: Implications for treatment. Clinical Psychology Review, 60, 3244. doi: 10.1016/j.cpr.2017.12.004.
Lydecker, J. A., Ivezaj, V., & Grilo, C. M. (2020). Testing the validity and clinical utility of the severity specifiers for binge-eating disorder for predicting treatment outcomes. Journal of Consulting and Clinical Psychology, 88(2), 172178. doi: 10.1037/ccp0000464.
Mehl, A., Rohde, P., Gau, J. M., & Stice, E. (2019). Disaggregating the predictive effects of impaired psychosocial functioning on future DSM-5 eating disorder onset in high-risk female adolescents. International Journal of Eating Disorders, 52(7), 817824. doi: 10.1002/eat.23082.
Nakai, Y., Nin, K., Noma, S., Teramukai, S., Fujikawa, K., & Wonderlich, S. A. (2017). The impact of DSM-5 on the diagnosis and severity indicator of eating disorders in a treatment-seeking sample. International Journal of Eating Disorders, 50(11), 12471254. doi: 10.1002/eat.22777.
R Core Team (2013). R: A language and environment for statistical computing. R Foundation of Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org.
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 136.
Smith, K. E., Ellison, J. M., Crosby, R. D., Engel, S. G., Mitchell, J. E., Crow, S. J., … Wonderlich, S. A. (2017). The validity of DSM-5 severity specifiers for anorexia nervosa, bulimia nervosa, and binge-eating disorder. International Journal of Eating Disorders, 50(9), 11091113. doi: 10.1002/eat.22739.
Stein, D. J., Szatmari, P., Gaebel, W., Berk, M., Vieta, E., Maj, M., … Reed, G. M. (2020). Mental, behavioral and neurodevelopmental disorders in the ICD-11: An international perspective on key changes and controversies. BMC Medicine, 18(1), 21. doi: 10.1186/s12916-020-1495-2.
Stice, E., & Desjardins, C. D. (2018). Interactions between risk factors in the prediction of onset of eating disorders: Exploratory hypothesis generating analyses. Behaviour Research and Therapy, 105, 5262. doi: 10.1016/j.brat.2018.03.005.
Udo, T., & Grilo, C. M. (2019). Psychiatric and medical correlates of DSM-5 eating disorders in a nationally representative sample of adults in the United States. International Journal of Eating Disorders, 52(1), 4250. doi: 10.1002/eat.23004.
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 167.
Wang, S. B., Jones, P. J., Dreier, M., Elliott, H., & Grilo, C. M. (2019). Core psychopathology of treatment-seeking patients with binge-eating disorder: A network analysis investigation. Psychological Medicine, 49(11), 19231928. doi: 10.1017/S0033291718002702.

Keywords

Type Description Title
WORD
Supplementary materials

Forrest et al. supplementary material
Forrest et al. supplementary material

 Word (16 KB)
16 KB

Empirically determined severity levels for binge-eating disorder outperform existing severity classification schemes

  • Lauren N. Forrest (a1) (a2), Ross C. Jacobucci (a3) and Carlos M. Grilo (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.