Skip to main content Accessibility help

Divergent subcortical activity for distinct executive functions: stopping and shifting in obsessive compulsive disorder

  • S. Morein-Zamir (a1) (a2) (a3), V. Voon (a1) (a4), C. M. Dodds (a5), A. Sule (a1) (a6), J. van Niekerk (a4), B. J. Sahakian (a1) (a4) and T. W. Robbins (a1) (a2)...



There is evidence of executive function impairment in obsessive compulsive disorder (OCD) that potentially contributes to symptom development and maintenance. Nevertheless, the precise nature of these executive impairments and their neural basis remains to be defined.


We compared stopping and shifting, two key executive functions previously implicated in OCD, in the same task using functional magnetic resonance imaging, in patients with virtually no co-morbidities and age-, verbal IQ- and gender-matched healthy volunteers. The combined task allowed direct comparison of neural activity in stopping and shifting independent of patient sample characteristics and state variables such as arousal, learning, or current symptom expression.


Both OCD patients and controls exhibited right inferior frontal cortex activation during stopping, and left inferior parietal cortex activation during shifting. However, widespread under-activation across frontal-parietal areas was found in OCD patients compared to controls for shifting but not stopping. Conservative, whole-brain analyses also indicated marked divergent abnormal activation in OCD in the caudate and thalamus for these two cognitive functions, with stopping-related over-activation contrasting with shift-related under-activation.


OCD is associated with selective components of executive function, which engage similar common elements of cortico-striatal regions in different abnormal ways. The results implicate altered neural activation of subcortical origin in executive function abnormalities in OCD that are dependent on the precise cognitive and contextual requirements, informing current theories of symptom expression.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Divergent subcortical activity for distinct executive functions: stopping and shifting in obsessive compulsive disorder
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Divergent subcortical activity for distinct executive functions: stopping and shifting in obsessive compulsive disorder
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Divergent subcortical activity for distinct executive functions: stopping and shifting in obsessive compulsive disorder
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Address for correspondence: Dr S. Morein-Zamir, Department of Psychology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK. (Email:


Hide All
Abramovitch, A, Abramowitz, JS, Mittelman, A (2013). The neuropsychology of adult obsessive-compulsive disorder: a meta-analysis. Clinical Psychological Review 33, 11631171.
APA (2013). Diagnostic and Statistical Manual of Mental Disorders-5. American Psychiatric Association: Washington, DC.
Bohne, A, Savage, CR, Deckersbach, T, Keuthen, NJ, Wilhelm, S (2008). Motor inhibition in trichotillomania and obsessive-compulsive disorder. Journal of Psychiatric Research 42, 141150.
Brett, M, Anton, J, Valabregue, R, Poline, JB (2002). Region of interest analysis using an SPM toolbox. In Abstract presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2–6, Sendai, Japan.
Chamberlain, SR, Blackwell, AD, Fineberg, NA, Robbins, TW, Sahakian, BJ (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neuroscience and Biobehavioural Reviews 29, 399419.
Chamberlain, SR, Menzies, L, Hampshire, A, Suckling, J, Fineberg, NA, del Campo, N, Aitken, M, Craig, K, Owen, AM, Bullmore, ET, Robbins, TW, Sahakian, BJ (2008). Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321, 421422.
de Vries, FE, de Wit, SJ, Cath, DC, van der Werf, YD, van der Borden, V, van Rossum, TB, van Balkom, AJ, van der Wee, NJ, Veltman, DJ, van den Heuvel, OA (2014). Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder. Biological Psychiatry 76, 878887.
de Wit, SJ, de Vries, FE, van der Werf, YD, Cath, DC, Heslenfeld, DJ, Veltman, EM, van Balkom, AJ, Veltman, DJ, van den Heuvel, OA (2012). Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. American Journal of Psychiatry 169, 11001108.
Dodds, CM, Morein-Zamir, S, Robbins, TW (2011). Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cerebral Cortex 21, 11551165.
Evans, DW, Lewis, MD, Iobst, E (2004). The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive-compulsive disorder. Brain and Cognition 55, 220234.
Foa, EB, Huppert, JD, Leiberg, S, Langner, R, Kichic, R, Hajcak, G, Salkovskis, PM (2002). The obsessive-compulsive inventory: development and validation of a short version. Psychological Assessment 14, 485496.
Frith, CD, Friston, KJ, Herold, S, Silbersweig, D, Fletcher, P, Cahill, C, Dolan, RJ, Frackowiak, RS, Liddle, PF (1995). Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. British Journal of Psychiatry 167, 343349.
Goodman, WK, Price, LH, Rasmussen, SA, Mazure, C, Fleischmann, RL, Hill, CL, Heninger, GR, Charney, DS (1989). The yale-brown obsessive compulsive scale. I. Development, use, and reliability. Archives of General Psychiatry 46, 10061011.
Gu, BM, Park, JY, Kang, DH, Lee, SJ, Yoo, SY, Jo, HJ, Choi, CH, Lee, JM, Kwon, JS (2008). Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain 131, 155164.
Harle, KM, Shenoy, P, Stewart, JL, Tapert, SF, Yu, AJ, Paulus, MP (2014). Altered neural processing of the need to stop in young adults at risk for stimulant dependence. Journal of Neuroscience 34, 45674580.
Hart, H, Radua, J, Nakao, T, Mataix-Cols, D, Rubia, K (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 70, 185198.
Kang, DH, Jang, JH, Han, JY, Kim, JH, Jung, WH, Choi, JS, Choi, CH, Kwon, JS (2013). Neural correlates of altered response inhibition and dysfunctional connectivity at rest in obsessive-compulsive disorder. Progress in Neuropsychopharmacology and Biological Psychiatry 40, 340346.
Kuelz, AK, Hohagen, F, Voderholzer, U (2004). Neuropsychological performance in obsessive-compulsive disorder: a critical review. Biological Psychology 65, 185236.
Maltby, N, Tolin, DF, Worhunsky, P, O'Keefe, TM, Kiehl, KA (2005). Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: an event-related fMRI study. Neuroimage 24, 495503.
Meiran, N, Diamond, GM, Toder, D, Nemets, B (2011). Cognitive rigidity in unipolar depression and obsessive compulsive disorder: examination of task switching, Stroop, working memory updating and post-conflict adaptation. Psychiatry Research 185, 149156.
Menzies, L, Achard, S, Chamberlain, SR, Fineberg, N, Chen, CH, del Campo, N, Sahakian, BJ, Robbins, TW, Bullmore, E (2007). Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain 130, 32233236.
Menzies, L, Chamberlain, SR, Laird, AR, Thelen, SM, Sahakian, BJ, Bullmore, ET (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neuroscience Biobehavioural Reviews 32, 525549.
Milad, MR, Rauch, SL (2012). Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends in Cognitive Science 16, 4351.
Miyake, A, Friedman, NP, Emerson, MJ, Witzki, AH, Howerter, A, Wager, TD (2000). The unity and diversity of executive functions and their contributions to complex ‘Frontal Lobe’ tasks: a latent variable analysis. Cognitive Psychology 41, 49100.
Montgomery, SA, Asberg, M (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry 134, 382389.
Morein-Zamir, S, Dodds, C, van Hartevelt, TJ, Schwarzkopt, W, Sahakian, BJ, Muller, U, Robbins, TW (2014). Hypoactivation in right inferior frontal cortex is specifically associated with motor response inhibition in adult ADHD. Human Brain Mapping 35, 51415152.
Morein-Zamir, S, Fineberg, NA, Robbins, TW, Sahakian, BJ (2010). Inhibition of thoughts and actions in obsessive-compulsive disorder: extending the endophenotype? Psychological Medicine 40, 263272.
Morein-Zamir, S, Papmeyer, M, Durieux, A, Fineberg, NA, Sahakian, BJ, Robbins, TW (2013 a). Investigation of attentional bias in obsessive compulsive disorder with and without depression in visual search. PLoS ONE 8, e80118.
Morein-Zamir, S, Papmeyer, M, Gillan, CM, Crockett, MJ, Fineberg, NA, Sahakian, BJ, Robbins, TW (2013 b). Punishment promotes response control deficits in obsessive-compulsive disorder: evidence from a motivational go/no-go task. Psychological Medicine 43, 391400.
Morein-Zamir, S, Robbins, TW (2014). Fronto-striatal circuits in response-inhibition: relevance to addiction. Brain Research. Published online: 16 September 2014. doi: 10.1016/j.brainres.2014.09.012.
Morein-Zamir, S, Simon Jones, P, Bullmore, ET, Robbins, TW, Ersche, KD (2013 c). Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings. Neuropsychopharmacology 38, 19451953.
Moritz, S, Hubner, M, Kluwe, R (2004). Task switching and backward inhibition in obsessive-compulsive disorder. Journal of Clinical and Experimental Neuropsychology 26, 677683.
Nakao, T, Nakagawa, A, Nakatani, E, Nabeyama, M, Sanematsu, H, Yoshiura, T, Togao, O, Tomita, M, Masuda, Y, Yoshioka, K, Kuroki, T, Kanba, S (2009). Working memory dysfunction in obsessive-compulsive disorder: a neuropsychological and functional MRI study. Journal of Psychiatry Research 43, 784791.
Nakao, T, Nakagawa, A, Yoshiura, T, Nakatani, E, Nabeyama, M, Yoshizato, C, Kudoh, A, Tada, K, Yoshioka, K, Kawamoto, M (2005). A functional MRI comparison of patients with obsessive-compulsive disorder and normal controls during a Chinese character Stroop task. Psychiatry Research 139, 101114.
Nelson, HE (1982). The National Adult Reading Test Manual. NFER-Nelson: Windsor.
Page, LA, Rubia, K, Deeley, Q, Daly, E, Toal, F, Mataix-Cols, D, Giampietro, V, Schmitz, N, Murphy, DG (2009). A functional magnetic resonance imaging study of inhibitory control in obsessive-compulsive disorder. Psychiatry Research 174, 202209.
Remijnse, PL, van den Heuvel, OA, Nielen, MM, Vriend, C, Hendriks, GJ, Hoogendijk, WJ, Uylings, HB, Veltman, DJ (2013). Cognitive inflexibility in obsessive-compulsive disorder and major depression is associated with distinct neural correlates. PLoS ONE 8, e59600.
Robbins, TW (2007). Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 362, 917932.
Rotge, JY, Guehl, D, Dilharreguy, B, Cuny, E, Tignol, J, Bioulac, B, Allard, M, Burbaud, P, Aouizerate, B (2008). Provocation of obsessive-compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. Journal of Psychiatry and Neuroscience 33, 405412.
Rotge, JY, Guehl, D, Dilharreguy, B, Tignol, J, Bioulac, B, Allard, M, Burbaud, P, Aouizerate, B (2009). Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biological Psychiatry 65, 7583.
Roth, RM, Saykin, AJ, Flashman, LA, Pixley, HS, West, JD, Mamourian, AC (2007). Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder. Biological Psychiatry 62, 901909.
Rubia, K, Cubillo, A, Woolley, J, Brammer, MJ, Smith, A (2011). Disorder-specific dysfunctions in patients with attention-deficit/hyperactivity disorder compared to patients with obsessive-compulsive disorder during interference inhibition and attention allocation. Human Brain Mapping 32, 601611.
Rubia, K, Smith, AB, Brammer, MJ, Toone, B, Taylor, E (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. American Journal of Psychiatry 162, 10671075.
Shaw, P, Sharp, W, Sudre, G, Wharton, A, Greenstein, D, Raznahan, A, Evans, A, Chakravarty, MM, Lerch, JP, Rapoport, J (2015). Subcortical and cortical morphological anomalies as an endophenotype in obsessive-compulsive disorder. Molecular Psychiatry 20, 224231.
Sheehan, DV, Lecrubier, Y, Sheehan, KH, Amorim, P, Janavs, J, Weiller, E, Hergueta, T, Baker, R, Dunbar, GC (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59 (Suppl. 20), 2233; quiz 34–57.
Shin, NY, Lee, TY, Kim, E, Kwon, JS (2014). Cognitive functioning in obsessive-compulsive disorder: a meta-analysis. Psychological Medicine 44, 11211130.
Snyder, HR, Kaiser, RH, Warren, SL, Heller, W (2015). Obsessive-compulsive disorder is associated with broad impairments in executive function: a meta-analysis. Clinical Psychological Science 3, 301330.
Tzourio-Mazoyer, N, Landeau, B, Papathanassiou, D, Crivello, F, Etard, O, Delcroix, N, Mazoyer, B, Joliot, M (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273289.
Ursu, S, Stenger, VA, Shear, MK, Jones, MR, Carter, CS (2003). Overactive action monitoring in obsessive-compulsive disorder: evidence from functional magnetic resonance imaging. Psychological Science 14, 347353.
van den Heuvel, OA, Veltman, DJ, Groenewegen, HJ, Cath, DC, van Balkom, AJ, van Hartskamp, J, Barkhof, F, van Dyck, R (2005). Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Archives of General Psychiatry 62, 301309.
Wager, TD, Jonides, J, Reading, S (2004). Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage 22, 16791693.
Watkins, LH, Sahakian, BJ, Robertson, MM, Veale, DM, Rogers, RD, Pickard, KM, Aitken, MR, Robbins, TW (2005). Executive function in Tourette's syndrome and obsessive-compulsive disorder. Psychological Medicine 35, 571582.
Weinberger, DR, Berman, KF (1996). Prefrontal function in schizophrenia: confounds and controversies. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 351, 14951503.
Whiteside, SP, Port, JD, Abramowitz, JS (2004). A meta–analysis of functional neuroimaging in obsessive–compulsive disorder. Psychiatry Research: Neuroimaging 132, 6979.
Willcutt, EG, Doyle, AE, Nigg, JT, Faraone, SV, Pennington, BF (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry 57, 13361346.


Type Description Title
Supplementary materials

Morein-Zamir supplementary material
Morein-Zamir supplementary material 1

 Word (203 KB)
203 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed