Skip to main content Accessibility help

Diminished modulation of preparatory sensorimotor mu rhythm predicts attention-deficit/hyperactivity disorder severity

  • N. ter Huurne (a1), D. Lozano-Soldevilla (a2), M. Onnink (a3), C. Kan (a4), J. Buitelaar (a1) (a5) and O. Jensen (a6)...



Attention-deficit/hyperactivity disorder (ADHD) is characterized by problems in regulating attention and in suppressing disruptive motor activity, i.e. hyperactivity and impulsivity. We recently found evidence that aberrant distribution of posterior α band oscillations (8–12 Hz) is associated with attentional problems in ADHD. The sensorimotor cortex also produces strong 8–12 Hz band oscillations, namely the μ rhythm, and is thought to have a similar inhibitory function. Here, we now investigate whether problems in distributing α band oscillations in ADHD generalize to the μ rhythm in the sensorimotor domain.


In a group of adult ADHD (n = 17) and healthy control subjects (n = 18; aged 21–40 years) oscillatory brain activity was recorded using magnetoencephalography during a visuo-spatial attention task. Subjects had to anticipate a target with unpredictable timing and respond by pressing a button.


Preparing a motor response, the ADHD group failed to increase hemispheric μ lateralization with relatively higher μ power in sensorimotor regions not engaged in the task, as the controls did (F 1,33 = 8.70, p = 0.006). Moreover, the ADHD group pre-response μ lateralization not only correlated positively with accuracy (r s = 0.64, p = 0.0052) and negatively with intra-individual reaction time variability (r s = −0.52, p = 0.033), but it also correlated negatively with the score on an ADHD rating scale (r s = −0.53, p = 0.028).


We suggest that ADHD is associated with an inability to sufficiently inhibit task-irrelevant sensorimotor areas by means of modulating μ oscillatory activity. This could explain disruptive motor activity in ADHD. These results provide further evidence that impaired modulation of α band oscillations is involved in the pathogenesis of ADHD.


Corresponding author

*Address for correspondence: N. ter Huurne, Karakter Child and Adolescent Psychiatry University Centre, Reinier Postlaan 12, 6526 GC Nijmegen, The Netherlands. (Email:


Hide All
Adams, ZW, Derefinko, KJ, Milich, R, Fillmore, MT (2008). Inhibitory functioning across ADHD subtypes: recent findings, clinical implications, and future directions. Developmental Disabilities Research Reviews 14, 268275.
American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th edn, text rev. American Psychiatric Press: Washington, DC.
Aron, AR (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biological Psychiatry 69, e55e68.
Babiloni, C, Brancucci, A, Arendt-Nielsen, L, Babiloni, F, Capotosto, P, Carducci, F, Cincotti, F, Romano, L, Chen, AC, Rossini, PM (2004). Α event-related desynchronization preceding a go/no-go task: a high-resolution EEG study. Neuropsychology 18, 719728.
Barkley, RA (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychological Bulletin 121, 6594.
Bastiaansen, MC, Knosche, TR (2000). Tangential derivative mapping of axial MEG applied to event-related desynchronization research. Clinical Neurophysiology 111, 13001305.
Boonstra, AM, Kooij, JJ, Oosterlaan, J, Sergeant, JA, Buitelaar, JK (2010). To act or not to act, that's the problem: primarily inhibition difficulties in adult ADHD. Neuropsychology 24, 209221.
Brunia, CH (1999). Neural aspects of anticipatory behavior. Acta Psychologica 101, 213242.
Chambers, CD, Garavan, H, Bellgrove, MA (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience and Biobehavioral Reviews 33, 631646.
Clark, L, Blackwell, AD, Aron, AR, Turner, DC, Dowson, J, Robbins, TW, Sahakian, BJ (2007). Association between response inhibition and working memory in adult ADHD: a link to right frontal cortex pathology? Biological Psychiatry 61, 13951401.
Cubillo, A, Halari, R, Ecker, C, Giampietro, V, Taylor, E, Rubia, K (2010). Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood attention-deficit hyperactivity disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching. Journal of Psychiatric Research 44, 629639.
Devos, D, Szurhaj, W, Reyns, N, Labyt, E, Houdayer, E, Bourriez, JL, Cassim, F, Krystkowiak, P, Blond, S, Destee, A, Derambure, P, Defebvre, L (2006). Predominance of the contralateral movement-related activity in the subthalamo-cortical loop. Clinical Neurophysiology 117, 23152327.
Dockstader, C, Gaetz, W, Cheyne, D, Tannock, R (2009). Abnormal neural reactivity to unpredictable sensory events in attention-deficit/hyperactivity disorder. Biological Psychiatry 66, 376383.
DuPaul, GPT, Anastopoulos, A (1998). ADHD Rating Scale–IV: Checklists, Norms and Clinical Interpretation. Guilford Press: New York.
Fayyad, J, De Graaf, R, Kessler, R, Alonso, J, Angermeyer, M, Demyttenaere, K, De Girolamo, G, Haro, JM, Karam, EG, Lara, C, Lepine, JP, Ormel, J, Posada-Villa, J, Zaslavsky, AM, Jin, R (2007). Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. British Journal of Psychiatry 190, 402409.
Foxe, JJ, Snyder, AC (2011). The role of α-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology 2, 154.
Hoogman, M, Aarts, E, Zwiers, M, Slaats-Willemse, D, Naber, M, Onnink, M, Cools, R, Kan, C, Buitelaar, J, Franke, B (2011). Nitric oxide synthase genotype modulation of impulsivity and ventral striatal activity in adult ADHD patients and healthy comparison subjects. American Journal of Psychiatry 168, 10991106.
Hughes, SW, Crunelli, V (2005). Thalamic mechanisms of EEG α rhythms and their pathological implications. Neuroscientist 11, 357372.
Jensen, O, Mazaheri, A (2010). Shaping functional architecture by oscillatory α activity: gating by inhibition. Frontiers in Human Neuroscience 4, 186.
Jung, TP, Makeig, S, Humphries, C, Lee, TW, McKeown, MJ, Iragui, V, Sejnowski, TJ (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163178.
Klimesch, W, Sauseng, P, Hanslmayr, S (2007). EEG α oscillations: the inhibition-timing hypothesis. Brain Research Reviews 53, 6388.
Kofler, MJ, Rapport, MD, Sarver, DE, Raiker, JS, Orban, SA, Friedman, LM, Kolomeyer, EG (2013). Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clinical Psychology Reviews 33, 795811.
Kooij, JFM (2007). Diagnostisch Interview voor ADHD (DIVA) bij volwassenen (Diagnostic Interview for ADHD (DIVA) in Adults). DIVA Foundation: the Hague, the Netherlands.
Kooij, JJ, Buitelaar, JK, van den Oord, EJ, Furer, JW, Rijnders, CA, Hodiamont, PP (2005). Internal and external validity of attention-deficit hyperactivity disorder in a population-based sample of adults. Psychological Medicine 35, 817827.
Majid, DS, Cai, W, Corey-Bloom, J, Aron, AR (2013). Proactive selective response suppression is implemented via the basal ganglia. Journal of Neuroscience 33, 1325913269.
Mazaheri, A, Coffey-Corina, S, Mangun, GR, Bekker, EM, Berry, AS, Corbett, BA (2010). Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder. Biological Psychiatry 67, 617623.
Mazaheri, A, Fassbender, C, Coffey-Corina, S, Hartanto, TA, Schweitzer, JB, Mangun, GR (2014). Differential oscillatory electroencephalogram between attention-deficit/hyperactivity disorder subtypes and typically developing adolescents. Biological Psychiatry 76, 422429.
Mazaheri, A, Nieuwenhuis, IL, van Dijk, H, Jensen, O (2009). Prestimulus α and μ activity predicts failure to inhibit motor responses. Human Brain Mapping 30, 17911800.
Muthukumaraswamy, SD, Johnson, BW, McNair, NA (2004). μ Rhythm modulation during observation of an object-directed grasp. Brain Research. Cognitive Brain Research 19, 195201.
Neuper, C, Wortz, M, Pfurtscheller, G (2006). ERD/ERS patterns reflecting sensorimotor activation and deactivation. Progress in Brain Research 159, 211222.
Nigg, JT (2005). Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the state of the field and salient challenges for the coming decade. Biological Psychiatry 57, 14241435.
Oldfield, RC (1971). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9, 97113.
Pfurtscheller, G, Brunner, C, Schlogl, A, Lopes da Silva, FH (2006). μ Rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31, 153159.
Pfurtscheller, G, Neuper, C (1994). Event-related synchronization of μ rhythm in the EEG over the cortical hand area in man. Neuroscience Letters 174, 9396.
Pfurtscheller, G, Neuper, C (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters 239, 6568.
Pfurtscheller, G, Neuper, C, Krausz, G (2000). Functional dissociation of lower and upper frequency μ rhythms in relation to voluntary limb movement. Clinical Neurophysiology 111, 18731879.
Pfurtscheller, G, Pregenzer, M, Neuper, C (1994). Visualization of sensorimotor areas involved in preparation for hand movement based on classification of μ and central β rhythms in single EEG trials in man. Neuroscience Letters 181, 4346.
Polanczyk, G, de Lima, MS, Horta, BL, Biederman, J, Rohde, LA (2007). The worldwide prevalence of ADHD: a systematic review and metaregression analysis. American Journal of Psychiatry 164, 942948.
Rubia, K, Overmeyer, S, Taylor, E, Brammer, M, Williams, SC, Simmons, A, Bullmore, ET (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. American Journal of Psychiatry 156, 891896.
Rubia, K, Taylor, E, Smith, AB, Oksanen, H, Overmeyer, S, Newman, S (2001). Neuropsychological analyses of impulsiveness in childhood hyperactivity. British Journal of Psychiatry 179, 138143.
Saalmann, YB, Pinsk, MA, Wang, L, Li, X, Kastner, S (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753756.
Salmelin, R, Hari, R (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60, 537550.
Sergeant, JA, Geurts, H, Huijbregts, S, Scheres, A, Oosterlaan, J (2003). The top and the bottom of ADHD: a neuropsychological perspective. Neuroscience and Biobehavioral Reviews 27, 583592.
Simon, V, Czobor, P, Balint, S, Meszaros, A, Bitter, I (2009). Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. British Journal of Psychiatry 194, 204211.
Stancak, A Jr., Pfurtscheller, G (1996). μ-Rhythm changes in brisk and slow self-paced finger movements. Neuroreport 7, 11611164.
Stolk, A, Todorovic, A, Schoffelen, JM, Oostenveld, R (2013). Online and offline tools for head movement compensation in MEG. NeuroImage 68, 3948.
Teicher, MH, Anderson, CM, Polcari, A, Glod, CA, Maas, LC, Renshaw, PF (2000). Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nature Medicine 6, 470473.
ter Huurne, N, Onnink, M, Kan, C, Franke, B, Buitelaar, J, Jensen, O (2013). Behavioral consequences of aberrant α lateralization in attention-deficit/hyperactivity disorder. Biological Psychiatry 74, 227233.
Wechsler, D (1997). Wechsler Adult Intelligence Scale, third edn. The Psychological Corporation: San Antonio, TX.
Yordanova, J, Kolev, V, Rothenberger, A (2013). Event-related oscillations reflect functional asymmetry in children with attention deficit/hyperactivity disorder. Supplements to Clinical Neurophysiology 62, 289301.


Diminished modulation of preparatory sensorimotor mu rhythm predicts attention-deficit/hyperactivity disorder severity

  • N. ter Huurne (a1), D. Lozano-Soldevilla (a2), M. Onnink (a3), C. Kan (a4), J. Buitelaar (a1) (a5) and O. Jensen (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed