Skip to main content Accessibility help
×
Home

Different neural substrates for executive functions in youths with ADHD: a diffusion spectrum imaging tractography study

  • H.-L. Chiang (a1) (a2) (a3), Y.-J. Chen (a4), C.-Y. Shang (a1), W.-Y. I. Tseng (a4) (a5) (a6) and S. S.-F. Gau (a1) (a2) (a5)...

Abstract

Background

The relationship between white-matter tracts and executive functions (EF) in attention deficit hyperactivity disorder (ADHD) has not been well studied and previous studies mainly focused on frontostriatal (FS) tracts. The authors explored the microstructural property of several fibre tracts hypothesized to be involved in EF, to correlate their microstructural property with EF, and to explore whether such associations differ between ADHD and typically developing (TD) youths.

Method

We assessed 45 youths with ADHD and 45 individually matched TD youths with a computerized test battery for multiple dimensions of EF. From magnetic resonance imaging, FS tract, superior longitudinal fasciculus (SLF), arcuate fasciculus (AF) and cingulum bundle (CB) were reconstructed by diffusion spectrum imaging tractography. The generalized fractional anisotropy (GFA) values of white-matter tracts were computed to present microstructural property of each tract.

Results

We found lower GFA in the left FS tract, left SLF, left AF and right CB, and poorer performance in set-shifting, sustained attention, cognitive inhibition and visuospatial planning in ADHD than TD. The ADHD and TD groups demonstrated different association patterns between EF and fibre tract microstructural property. Most of the EF were associated with microstructural integrity of the FS tract and CB in TD youths, while with that of the FS tract, SLF and AF in youths with ADHD.

Conclusions

Our findings support that the SLF, AF and CB also involve in a wide range of EF and that the main fibre tracts involved in EF are different in youths with ADHD.

Copyright

Corresponding author

*Address for correspondence: S. S.-F. Gau, M.D., Ph.D., Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 10002, Taiwan. (Email: gaushufe@ntu.edu.tw) [S.S.-F.G] (Email: wytseng@ntu.edu.tw) [W.-Y.I.T]

References

Hide All
Ashburner, J, Friston, KJ (2011). Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage 55, 954967.
Bidwell, LC, Willcutt, EG, Defries, JC, Pennington, BF (2007). Testing for neuropsychological endophenotypes in siblings discordant for attention-deficit/hyperactivity disorder. Biological Psychiatry 62, 991998.
Chamberlain, SR, Robbins, TW, Winder-Rhodes, S, Muller, U, Sahakian, BJ, Blackwell, AD, Barnett, JH (2011). Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biological Psychiatry 69, 11921203.
Chien, YL, Gau, SS, Chiu, YN, Tsai, WC, Shang, CY, Wu, YY (2014). Impaired sustained attention, focused attention, and vigilance in youths with autistic disorder and Asperger's disorder. Research in Autism Spectrum Disorders 8, 881889.
Coghill, DR, Hayward, D, Rhodes, SM, Grimmer, C, Matthews, K (2014). A longitudinal examination of neuropsychological and clinical functioning in boys with attention deficit hyperactivity disorder (ADHD): improvements in executive functioning do not explain clinical improvement. Psychological Medicine 44, 10871099.
de Luis-Garcia, R, Cabus-Pinol, G, Imaz-Roncero, C, Argibay-Quinones, D, Barrio-Arranz, G, Aja-Fernandez, S, Alberola-Lopez, C (2015). Attention deficit/hyperactivity disorder and medication with stimulants in young children: a DTI study. Progress in Neuro-Psychopharmacology and Biological Psychiatry 57, 176184.
de Zeeuw, P, Mandl, RC, Hulshoff Pol, HE, van Engeland, H, Durston, S (2012). Decreased frontostriatal microstructural organization in attention deficit/hyperactivity disorder. Human Brain Mapping 33, 19411951.
Dibbets, P, Evers, EA, Hurks, PP, Bakker, K, Jolles, J (2010). Differential brain activation patterns in adult attention-deficit hyperactivity disorder (ADHD) associated with task switching. Neuropsychology 24, 413423.
Downes, JJ, Roberts, AC, Sahakian, BJ, Evenden, JL, Morris, RG, Robbins, TW (1989). Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson's disease: evidence for a specific attentional dysfunction. Neuropsychologia 27, 13291343.
Fassbender, C, Schweitzer, JB (2006). Is there evidence for neural compensation in attention deficit hyperactivity disorder? A review of the functional neuroimaging literature. Clinical Psychology Review 26, 445465.
Gau, SS, Chiu, CD, Shang, CY, Cheng, AT, Soong, WT (2009). Executive function in adolescence among children with attention-deficit/hyperactivity disorder in Taiwan. Journal of Developmental and Behavioral Pediatrics 30, 525534.
Gau, SS, Chong, MY, Chen, TH, Cheng, AT (2005). A 3-year panel study of mental disorders among adolescents in Taiwan. American Journal of Psychiatry 162, 13441350.
Gau, SS, Huang, WL (2014). Rapid visual information processing as a cognitive endophenotype of attention deficit hyperactivity disorder. Psychological Medicine 44, 435446.
Gau, SS, Lin, YJ, Cheng, AT, Chiu, YN, Tsai, WC, Soong, WT (2010). Psychopathology and symptom remission at adolescence among children with attention-deficit-hyperactivity disorder. Australian & New Zealand Journal of Psychiatry 44, 323332.
Gau, SS, Shang, CY (2010 a). Executive functions as endophenotypes in ADHD: evidence from the Cambridge Neuropsychological Test Battery (CANTAB). Journal of Child Psychology and Psychiatry 51, 838849.
Gau, SS, Shang, CY (2010 b). Improvement of executive functions in boys with attention deficit hyperactivity disorder: an open-label follow-up study with once-daily atomoxetine. International Journal of Neuropsychopharmacology 13, 243256.
Gau, SS, Shang, CY, Liu, SK, Lin, CH, Swanson, JM, Liu, YC, Tu, CL (2008). Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale – parent form. International Journal of Methods in Psychiatric Research 17, 3544.
Gau, SS, Tseng, WL, Tseng, WY, Wu, HY (2014). Association between microstructural integrity of frontostriatal tracts and school functioning: ADHD symptoms and executive function as mediators. Psychological Medicine 30, 115.
Ge, H, Yin, X, Xu, J, Tang, Y, Han, Y, Xu, W, Pang, Z, Meng, H, Liu, S (2013). Fiber pathways of attention subnetworks revealed with tract-based spatial statistics (TBSS) and probabilistic tractography. PLoS ONE 8, e78831.
Hamilton, LS, Levitt, JG, O'Neill, J, Alger, JR, Luders, E, Phillips, OR, Caplan, R, Toga, AW, McCracken, J, Narr, KL (2008). Reduced white matter integrity in attention-deficit hyperactivity disorder. Neuroreport 19, 17051708.
Hart, H, Radua, J, Nakao, T, Mataix-Cols, D, Rubia, K (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 70, 185198.
Hsu, YC, Hsu, CH, Tseng, WY (2012). A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. Neuroimage 63, 818834.
Ikuta, T, Shafritz, KM, Bregman, J, Peters, BD, Gruner, P, Malhotra, AK, Szeszko, PR (2014). Abnormal cingulum bundle development in autism: a probabilistic tractography study. Psychiatry Research 221, 6368.
Kantarci, K, Senjem, ML, Avula, R, Zhang, B, Samikoglu, AR, Weigand, SD, Przybelski, SA, Edmonson, HA, Vemuri, P, Knopman, DS, Boeve, BF, Ivnik, RJ, Smith, GE, Petersen, RC, Jack, CR Jr. (2011). Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology 77, 2634.
King, JB, Yurgelun-Todd, D, Stoeckel, A, DiMuzio, JM, Lopez-Larson, MP (2015). Sex differences in white matter integrity in youths with attention-deficit/hyperactivity disorder: a pilot study. Frontiers in Neuroscience 9, 232.
Konrad, K, Neufang, S, Hanisch, C, Fink, GR, Herpertz-Dahlmann, B (2006). Dysfunctional attentional networks in children with attention deficit/hyperactivity disorder: evidence from an event-related functional magnetic resonance imaging study. Biological Psychiatry 59, 643651.
Kucukboyaci, NE, Girard, HM, Hagler, DJ Jr., Kuperman, J, Tecoma, ES, Iragui, VJ, Halgren, E, McDonald, CR (2012). Role of frontotemporal fiber tract integrity in task-switching performance of healthy controls and patients with temporal lobe epilepsy. Journal of the International Neuropsychological Society 18, 5767.
Kuo, LW, Chen, JH, Wedeen, VJ, Tseng, WY (2008). Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage 41, 718.
Lawrence, KE, Levitt, JG, Loo, SK, Ly, R, Yee, V, O'Neill, J, Alger, J, Narr, KL (2013). White matter microstructure in subjects with attention-deficit/hyperactivity disorder and their siblings. Journal of the American Academy of Child and Adolescent Psychiatry 52, 431440, e434.
Lebel, C, Warner, T, Colby, J, Soderberg, L, Roussotte, F, Behnke, M, Davis Eyler, F, Sowell, ER (2013). White matter microstructure abnormalities and executive function in adolescents with prenatal cocaine exposure. Psychiatry Research 213, 161168.
Lin, CP, Wedeen, VJ, Chen, JH, Yao, C, Tseng, WY (2003). Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. Neuroimage 19, 482495.
Lin, HY, Gau, SS, Huang-Gu, SL, Shang, CY, Wu, YH, Tseng, WY (2014). Neural substrates of behavioral variability in attention deficit hyperactivity disorder: based on ex-Gaussian reaction time distribution and diffusion spectrum imaging tractography. Psychological Medicine 44, 17511764.
Liston, C, Malter Cohen, M, Teslovich, T, Levenson, D, Casey, BJ (2011). Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biological Psychiatry 69, 11681177.
Lo, YC, Soong, WT, Gau, SS, Wu, YY, Lai, MC, Yeh, FC, Chiang, WY, Kuo, LW, Jaw, FS, Tseng, WY (2011). The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Research 192, 6066.
Luciana, M, Nelson, CA (1998). The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia 36, 273293.
Makris, N, Buka, SL, Biederman, J, Papadimitriou, GM, Hodge, SM, Valera, EM, Brown, AB, Bush, G, Monuteaux, MC, Caviness, VS, Kennedy, DN, Seidman, LJ (2008). Attention and executive systems abnormalities in adults with childhood ADHD: a DT-MRI study of connections. Cerebral Cortex 18, 12101220.
Martino, J, De Witt Hamer, PC, Berger, MS, Lawton, MT, Arnold, CM, de Lucas, EM, Duffau, H (2013). Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Structure and Function 218, 105121.
Mostofsky, SH, Cooper, KL, Kates, WR, Denckla, MB, Kaufmann, WE (2002). Smaller prefrontal and premotor volumes in boys with attention-deficit/hyperactivity disorder. Biological Psychiatry 52, 785794.
Ni, HC, Lin, YJ, Gau, SS, Huang, HC, Yang, LK (2013). An open-label, randomized trial of methylphenidate and atomoxetine treatment in adults with ADHD. Journal of Attention Disorders 16, 19591973.
Pavuluri, MN, Yang, S, Kamineni, K, Passarotti, AM, Srinivasan, G, Harral, EM, Sweeney, JA, Zhou, XJ (2009). Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. Biological Psychiatry 65, 586593.
Peters, BD, Ikuta, T, Derosse, P, John, M, Burdick, KE, Gruner, P, Prendergast, DM, Szeszko, PR, Malhotra, AK (2014). Age-related differences in white matter tract microstructure are associated with cognitive performance from childhood to adulthood. Biological Psychiatry 75, 248256.
Peters, BD, Szeszko, PR, Radua, J, Ikuta, T, Gruner, P, DeRosse, P, Zhang, JP, Giorgio, A, Qiu, D, Tapert, SF, Brauer, J, Asato, MR, Khong, PL, James, AC, Gallego, JA, Malhotra, AK (2012). White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophrenia Bulletin 38, 13081317.
Peterson, DJ, Ryan, M, Rimrodt, SL, Cutting, LE, Denckla, MB, Kaufmann, WE, Mahone, EM (2011). Increased regional fractional anisotropy in highly screened attention-deficit hyperactivity disorder (ADHD). Journal of Child Neurology 26, 12961302.
Reese, TG, Heid, O, Weisskoff, RM, Wedeen, VJ (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine 49, 177182.
Shang, CY, Gau, SS, Liu, CM, Hwu, HG (2011). Association between the dopamine transporter gene and the inattentive subtype of attention deficit hyperactivity disorder in Taiwan. Progress in Neuro-Psychopharmacology and Biological Psychiatry 35, 421428.
Shang, CY, Wu, YH, Gau, SS, Tseng, WY (2013). Disturbed microstructural integrity of the frontostriatal fiber pathways and executive dysfunction in children with attention deficit hyperactivity disorder. Psychological Medicine 43, 10931107.
Silk, TJ, Vance, A, Rinehart, N, Bradshaw, JL, Cunnington, R (2009). White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Human Brain Mapping 30, 27572765.
Takahashi, M, Iwamoto, K, Fukatsu, H, Naganawa, S, Iidaka, T, Ozaki, N (2010). White matter microstructure of the cingulum and cerebellar peduncle is related to sustained attention and working memory: a diffusion tensor imaging study. Neuroscience Letters 477, 7276.
Tamm, L, Barnea-Goraly, N, Reiss, AL (2012). Diffusion tensor imaging reveals white matter abnormalities in attention-deficit/hyperactivity disorder. Psychiatry Research 202, 150154.
Tseng, WL, Gau, SS (2013). Executive function as a mediator in the link between attention-deficit/hyperactivity disorder and social problems. Journal of Child Psychology and Psychiatry 54, 9961004.
Tuch, DS (2004). Q-ball imaging. Magnetic Resonance in Medicine 52, 13581372.
Tzourio-Mazoyer, N, Landeau, B, Papathanassiou, D, Crivello, F, Etard, O, Delcroix, N, Mazoyer, B, Joliot, M (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273289.
van Ewijk, H, Heslenfeld, DJ, Zwiers, MP, Buitelaar, JK, Oosterlaan, J (2012). Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews 36, 10931106.
Veazie, PJ (2006). When to combine hypotheses and adjust for multiple tests. Health Services Research 41, 804818.
Vestergaard, M, Madsen, KS, Baare, WF, Skimminge, A, Ejersbo, LR, Ramsoy, TZ, Gerlach, C, Akeson, P, Paulson, OB, Jernigan, TL (2011). White matter microstructure in superior longitudinal fasciculus associated with spatial working memory performance in children. Journal of Cognitive Neuroscience 23, 21352146.
Wakana, S, Nagae-Poetscher, LM, Jiang, H, van Zijl, P, Golay, X, Mori, S (2005). Macroscopic orientation component analysis of brain white matter and thalamus based on diffusion tensor imaging. Magnetic Resonance in Medicine 53, 649657.
Wedeen, VJ, Wang, RP, Schmahmann, JD, Benner, T, Tseng, WY, Dai, G, Pandya, DN, Hagmann, P, D'Arceuil, H, de Crespigny, AJ (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41, 12671277.
Wu, YH, Gau, SS, Lo, YC, Tseng, WY (2014). White matter tract integrity of frontostriatal circuit in attention deficit hyperactivity disorder: association with attention performance and symptoms. Human Brain Mapping 35, 199212.
Yang, HN, Tai, YM, Yang, LK, Gau, SS (2013). Prediction of childhood ADHD symptoms to quality of life in young adults: adult ADHD and anxiety/depression as mediators. Research in Developmental Disabilities 34, 31683181.
Yeh, FC, Verstynen, TD, Wang, Y, Fernandez-Miranda, JC, Tseng, WY (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8, e80713.
Yeh, FC, Wedeen, VJ, Tseng, WY (2011). Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage 55, 10541062.

Keywords

Type Description Title
WORD
Supplementary materials

Chiang supplementary material
Chiang supplementary material 1

 Word (2.6 MB)
2.6 MB

Different neural substrates for executive functions in youths with ADHD: a diffusion spectrum imaging tractography study

  • H.-L. Chiang (a1) (a2) (a3), Y.-J. Chen (a4), C.-Y. Shang (a1), W.-Y. I. Tseng (a4) (a5) (a6) and S. S.-F. Gau (a1) (a2) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed