Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T19:04:38.474Z Has data issue: false hasContentIssue false

Decision-making under risk and ambiguity in adults with Tourette syndrome

Published online by Cambridge University Press:  28 July 2022

Cyril Atkinson-Clement*
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France School of Medicine, University of Nottingham, Nottingham, UK
Mael Lebreton
Affiliation:
Paris School of Economics, Paris, France Swiss Center for Affective Science, University of Geneva, Geneva, Switzerland Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
Leïla Patsalides
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France
Astrid de Liege
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
Yanica Klein
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
Emmanuel Roze
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France Department of Neurology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
Emmanuelle Deniau
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
Andreas Hartmann
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
Stefano Palminteri
Affiliation:
Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM, Paris, France Département d'Etudes Cognitives, ENS, PSL Research University, Paris, France Institute for Cognitive Neuroscience, HSE, Moscow, Russian Federation
Yulia Worbe*
Affiliation:
Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Sorbonne University, 75005 Paris, France Movement Investigation and Therapeutics Team, Paris, France National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France Department of Neurophysiology, Saint Antoine Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
*
Authors for correspondence: Cyril Atkinson-Clement, E-mail: Cyril.Atkinson-Clement@nottingham.ac.uk; Yulia Worbe, E-mail: yulia.worbe@aphp.fr
Authors for correspondence: Cyril Atkinson-Clement, E-mail: Cyril.Atkinson-Clement@nottingham.ac.uk; Yulia Worbe, E-mail: yulia.worbe@aphp.fr

Abstract

Background

Tourette syndrome (TS) as well as its most common comorbidities are associated with a higher propensity for risky behaviour in everyday life. However, it is unclear whether this increased risk propensity in real-life contexts translates into a generally increased attitude towards risk. We aimed to assess decision-making under risk and ambiguity based on prospect theory by considering the effects of comorbidities and medication.

Methods

Fifty-four individuals with TS and 32 healthy controls performed risk and ambiguity decision-making tasks under both gains and losses conditions. Behavioural and computational parameters were evaluated using (i) univariate analysis to determine parameters difference taking independently; (ii) supervised multivariate analysis to evaluate whether our parameters could jointly account for between-group differences (iii) unsupervised multivariate analysis to explore the potential presence of sub-groups.

Results

Except for general ‘noisier’ (less consistent) decisions in TS, we showed no specific risk-taking behaviour in TS or any relation with tics severity or antipsychotic medication. However, the presence of comorbidities was associated with distortion of decision-making. Specifically, TS with obsessive–compulsive disorder comorbidity was associated with a higher risk-taking profile to increase gain and a higher risk-averse profile to decrease loss. TS with attention-deficit hyperactivity disorder comorbidity was associated with risk-seeking in the ambiguity context to reduce a potential loss.

Conclusions

Impaired valuation of risk and ambiguity was not related to TS per se. Our findings are important for clinical practice: the involvement of individuals with TS in real-life risky situations may actually rather result from other factors such as psychiatric comorbidities.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson-Clement, C., Porte, C.-A., de Liege, A., Klein, Y., Delorme, C., Beranger, B., … Worbe, Y. (2020). Impulsive prepotent actions and tics in Tourette disorder underpinned by a common neural network. Molecular Psychiatry, 26, 35483557. https://doi.org/10.1038/s41380-020-00890-5.CrossRefGoogle ScholarPubMed
Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012). Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron, 73(3), 595607. https://doi.org/10.1016/j.neuron.2011.12.025.CrossRefGoogle ScholarPubMed
Betsch, T., Haberstroh, S., Molter, B., & Glöckner, A. (2004). Oops, I did it again – Relapse errors in routinized decision making. Organizational Behavior and Human Decision Processes, 93(1), 6274. https://doi.org/10.1016/j.obhdp.2003.09.002.CrossRefGoogle Scholar
Bran, A., & Vaidis, D. C. (2020). Assessing risk-taking: What to measure and how to measure it. Journal of Risk Research, 23(4), 490503. https://doi.org/10.1080/13669877.2019.1591489.CrossRefGoogle Scholar
Brandt, V., Kerner auch Koerner, J., & Palmer-Cooper, E. (2019). The association of non-obscene socially inappropriate behavior with attention-deficit/hyperactivity disorder symptoms, conduct problems, and risky decision making in a large sample of adolescents. Frontiers in Psychiatry, 10, 660. https://doi.org/10.3389/fpsyt.2019.00660.CrossRefGoogle Scholar
Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk taking: A meta-analysis. Psychological Bulletin, 125(3), 367383. https://doi.org/10.1037/0033-2909.125.3.367.CrossRefGoogle Scholar
Cavedini, P., Gorini, A., & Bellodi, L. (2006). Understanding obsessive–compulsive disorder: Focus on decision making. Neuropsychology Review, 16(1), 315. https://doi.org/10.1007/s11065-006-9001-y.CrossRefGoogle ScholarPubMed
Chen, S.-F., Su, Y.-C., Wang, L.-Y., Hsu, C.-Y., & Shen, Y.-C. (2019). Tourette's syndrome is associated with an increased risk of traumatic brain injury: A nationwide population-based cohort study. Parkinsonism & Related Disorders, 63, 8893. https://doi.org/10.1016/j.parkreldis.2019.02.033.CrossRefGoogle ScholarPubMed
Cox, J. H., & Cavanna, A. E. (2021). Aripiprazole for the treatment of Tourette syndrome. Expert Review of Neurotherapeutics, 21(4), 381391. https://doi.org/10.1080/14737175.2021.1893693.CrossRefGoogle ScholarPubMed
Crawford, S., Channon, S., & Robertson, M. M. (2005). Tourette's syndrome: Performance on tests of behavioural inhibition, working memory and gambling. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 46(12), 13271336. https://doi.org/10.1111/j.1469-7610.2005.01419.x.CrossRefGoogle Scholar
Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. In Zhang, C. & Ma, Y. (Eds.), Ensemble machine learning (pp. 157175). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-9326-7_5.CrossRefGoogle Scholar
Dahlen, E. R., Martin, R. C., Ragan, K., & Kuhlman, M. M. (2005). Driving anger, sensation seeking, impulsiveness, and boredom proneness in the prediction of unsafe driving. Accident Analysis & Prevention, 37(2), 341348. https://doi.org/10.1016/j.aap.2004.10.006.CrossRefGoogle ScholarPubMed
Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Computational Biology, 10(1), e1003441. https://doi.org/10.1371/journal.pcbi.1003441.CrossRefGoogle ScholarPubMed
Daunizeau, J., Preuschoff, K., Friston, K., & Stephan, K. (2011). Optimizing experimental design for comparing models of brain function. PLoS Computational Biology, 7(11), e1002280. https://doi.org/10.1371/journal.pcbi.1002280.CrossRefGoogle ScholarPubMed
Dekkers, T. J., Agelink van Rentergem, J. A., Huizenga, H. M., Raber, H., Shoham, R., Popma, A., & Pollak, Y. (2021). Decision-making deficits in ADHD are not related to risk seeking but to suboptimal decision-making: Meta-analytical and novel experimental evidence. Journal of Attention Disorders, 25(4), 486501. https://doi.org/10.1177/1087054718815572.CrossRefGoogle Scholar
Dekkers, T. J., Huizenga, H. M., Popma, A., Bexkens, A., Zadelaar, J. N., & Jansen, B. R. J. (2020). Decision-making deficits in adolescent boys with and without attention-deficit/hyperactivity disorder (ADHD): An experimental assessment of associated mechanisms. Journal of Abnormal Child Psychology, 48(4), 495510. https://doi.org/10.1007/s10802-019-00613-7.CrossRefGoogle ScholarPubMed
De Petrillo, F., Paoletti, M., Bellagamba, F., Manzi, G., Paglieri, F., & Addessi, E. (2020). Contextual factors modulate risk preferences in adult humans. Behavioural Processes, 176, 104137. https://doi.org/10.1016/j.beproc.2020.104137.CrossRefGoogle ScholarPubMed
Eddy, C. M., & Cavanna, A. E. (2013). Altered social cognition in Tourette syndrome: Nature and implications. Behavioural Neurology, 27(1), 1522. https://doi.org/10.1155/2013/417516.CrossRefGoogle ScholarPubMed
Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75(4), 643. https://doi.org/10.2307/1884324.CrossRefGoogle Scholar
Etminan, M., Sodhi, M., Samii, A., Procyshyn, R. M., Guo, M., & Carleton, B. C. (2017). Risk of gambling disorder and impulse control disorder with aripiprazole, pramipexole, and ropinirole: A pharmacoepidemiologic study. Journal of Clinical Psychopharmacology, 37(1), 102104. https://doi.org/10.1097/JCP.0000000000000634.CrossRefGoogle ScholarPubMed
Fernández de la Cruz, L., & Mataix-Cols, D. (2020). General health and mortality in Tourette syndrome and chronic tic disorder: A mini-review. Neuroscience and Biobehavioral Reviews, 119, 514520. https://doi.org/10.1016/j.neubiorev.2020.11.005.CrossRefGoogle ScholarPubMed
Figner, B., & Weber, E. U. (2011). Who takes risks when and why?: Determinants of risk taking. Current Directions in Psychological Science, 20(4), 211216. https://doi.org/10.1177/0963721411415790.CrossRefGoogle Scholar
Frank, M. C., Piedad, J., Rickards, H., & Cavanna, A. E. (2011). The role of impulse control disorders in Tourette syndrome: An exploratory study. Journal of the Neurological Sciences, 310(1–2), 276278. https://doi.org/10.1016/j.jns.2011.06.032.CrossRefGoogle ScholarPubMed
Frank, M. J., Doll, B. B., Oas-Terpstra, J., & Moreno, F. (2009). Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nature Neuroscience, 12(8), 10621068. https://doi.org/10.1038/nn.2342.CrossRefGoogle ScholarPubMed
George, S. A., Sheynin, J., Gonzalez, R., Liberzon, I., & Abelson, J. L. (2019). Diminished value discrimination in obsessive–compulsive disorder: A prospect theory model of decision-making under risk. Frontiers in Psychiatry, 10, 469. https://doi.org/10.3389/fpsyt.2019.00469.CrossRefGoogle ScholarPubMed
Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cognitive Brain Research, 23(1), 137151. https://doi.org/10.1016/j.cogbrainres.2005.01.017.CrossRefGoogle ScholarPubMed
Grant, J. E. (2008). Impulse control disorders: A clinician's guide to understanding and treating behavioral addictions. New York: W.W. Norton.Google Scholar
Groen, Y., Gaastra, G. F., Lewis-Evans, B., & Tucha, O. (2013). Risky behavior in gambling tasks in individuals with ADHD – A systematic literature review. PLoS ONE, 8(9), e74909. https://doi.org/10.1371/journal.pone.0074909.CrossRefGoogle ScholarPubMed
Hanoch, Y., Johnson, J. G., & Wilke, A. (2006). Domain specificity in experimental measures and participant recruitment: An application to risk-taking behavior. Psychological Science, 17(4), 300304. https://doi.org/10.1111/j.1467-9280.2006.01702.x.CrossRefGoogle ScholarPubMed
Hirschtritt, M. E., Lee, P. C., Pauls, D. L., Dion, Y., Grados, M. A., Illmann, C., … Mathews, C. A. (2015). Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiatry, 72(4), 325. https://doi.org/10.1001/jamapsychiatry.2014.2650.CrossRefGoogle ScholarPubMed
Howat-Rodrigues, A. B. C., Tokumaru, R. S., & Izar, P. (2018). Modeling risk-taking from different measurement instruments. Paidéia (Ribeirão Preto), 28(0). https://doi.org/10.1590/1982-4327e2828.CrossRefGoogle Scholar
Humphreys, K. L., Tottenham, N., & Lee, S. S. (2018). Risky decision-making in children with and without ADHD: A prospective study. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 24(2), 261276. https://doi.org/10.1080/09297049.2016.1264578.CrossRefGoogle ScholarPubMed
Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404413. https://doi.org/10.1038/nn.4238.CrossRefGoogle ScholarPubMed
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263. https://doi.org/10.2307/1914185.CrossRefGoogle Scholar
Kim, H. W., Kang, J. I., Namkoong, K., Jhung, K., Ha, R. Y., & Kim, S. J. (2015). Further evidence of a dissociation between decision-making under ambiguity and decision-making under risk in obsessive–compulsive disorder. Journal of Affective Disorders, 176, 118124. https://doi.org/10.1016/j.jad.2015.01.060.CrossRefGoogle ScholarPubMed
Knight, F. (1921). Risk, uncertainty and profit. Boston, New York: Houghton Mifflin Company.Google Scholar
Kocher, M. G., & Sutter, M. (2006). Time is money – Time pressure, incentives, and the quality of decision-making. Journal of Economic Behavior & Organization, 61(3), 375392. https://doi.org/10.1016/j.jebo.2004.11.013.CrossRefGoogle Scholar
Lauriola, M., Panno, A., Levin, I. P., & Lejuez, C. W. (2014). Individual differences in risky decision making: A meta-analysis of sensation seeking and impulsivity with the balloon analogue risk task: Personality and risky decision making. Journal of Behavioral Decision Making, 27(1), 2036. https://doi.org/10.1002/bdm.1784.CrossRefGoogle Scholar
Leckman, J. F., Riddle, M. A., Hardin, M. T., Ort, S. I., Swartz, K. L., Stevenson, J., & Cohen, D. J. (1989). The Yale global tic severity scale: Initial testing of a clinician-rated scale of tic severity. Journal of the American Academy of Child & Adolescent Psychiatry, 28(4), 566573. https://doi.org/10.1097/00004583-198907000-00015.CrossRefGoogle ScholarPubMed
Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of subjective value under risk and ambiguity. Journal of Neurophysiology, 103(2), 10361047. https://doi.org/10.1152/jn.00853.2009.CrossRefGoogle ScholarPubMed
Maia, T. V., & Conceição, V. A. (2017). The roles of phasic and tonic dopamine in tic learning and expression. Biological Psychiatry, 82(6), 401412. https://doi.org/10.1016/j.biopsych.2017.05.025.CrossRefGoogle ScholarPubMed
Maia, T. V., & Conceição, V. A. (2018). Dopaminergic disturbances in Tourette syndrome: An integrative account. Biological Psychiatry, 84(5), 332344. https://doi.org/10.1016/j.biopsych.2018.02.1172.CrossRefGoogle ScholarPubMed
Maimon, O., & Rokach, L. (Eds.). (2010). Data mining and knowledge discovery handbook. Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-09823-4.CrossRefGoogle Scholar
Martino, D., Ganos, C., & Pringsheim, T. M. (2017). Tourette Syndrome and Chronic Tic Disorders: The Clinical Spectrum Beyond Tic. International review of neurobiology, 134, 14611490. https://doi.org/10.1016/bs.irn.2017.05.006.CrossRefGoogle ScholarPubMed
Mataix-Cols, D., Brander, G., Chang, Z., Larsson, H., D'Onofrio, B. M., Lichtenstein, P., … Fernández de la Cruz, L. (2021). Serious transport accidents in Tourette syndrome or chronic tic disorder. Movement Disorders, 36(1), 188195. https://doi.org/10.1002/mds.28301.CrossRefGoogle ScholarPubMed
Matlab (2018). 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc.Google Scholar
Meier, S. M., Dalsgaard, S., Mortensen, P. B., Leckman, J. F., & Plessen, K. J. (2017). Mortality risk in a nationwide cohort of individuals with tic disorders and with Tourette syndrome: Mortality risk in tic disorders/Tourette syndrome. Movement Disorders, 32(4), 605609. https://doi.org/10.1002/mds.26939.CrossRefGoogle Scholar
Milienne-Petiot, M., Geyer, M. A., Arnt, J., & Young, J. W. (2017). Brexpiprazole reduces hyperactivity, impulsivity, and risk-preference behavior in mice with dopamine transporter knockdown – A model of mania. Psychopharmacology, 234(6), 10171028. https://doi.org/10.1007/s00213-017-4543-7.CrossRefGoogle Scholar
Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 7280. https://doi.org/10.1016/j.tics.2011.11.018.CrossRefGoogle ScholarPubMed
Murphy, S. E., Longhitano, C., Ayres, R. E., Cowen, P. J., Harmer, C. J., & Rogers, R. D. (2009). The role of serotonin in nonnormative risky choice: The effects of tryptophan supplements on the ‘reflection effect’ in healthy adult volunteers. Journal of Cognitive Neuroscience, 21(9), 17091719. https://doi.org/10.1162/jocn.2009.21122.CrossRefGoogle ScholarPubMed
Nielsen, A. N., Gratton, C., Church, J. A., Dosenbach, N. U. F., Black, K. J., Petersen, S. E., … Greene, D. J. (2020). Atypical functional connectivity in Tourette syndrome differs between children and adults. Biological Psychiatry, 87(2), 164173. https://doi.org/10.1016/j.biopsych.2019.06.021.CrossRefGoogle ScholarPubMed
Norman, L. J., Carlisi, C. O., Christakou, A., Murphy, C. M., Chantiluke, K., Giampietro, V., … Rubia, K. (2018). Frontostriatal dysfunction during decision making in attention-deficit/hyperactivity disorder and obsessive–compulsive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(8), 694703. https://doi.org/10.1016/j.bpsc.2018.03.009.Google ScholarPubMed
Palminteri, S., & Chevallier, C. (2018). Can we infer inter-individual differences in risk-taking from behavioral tasks? Frontiers in Psychology, 9, 2307. https://doi.org/10.3389/fpsyg.2018.02307.CrossRefGoogle ScholarPubMed
Palminteri, S., Kilford, E. J., Coricelli, G., & Blakemore, S.-J. (2016). The computational development of reinforcement learning during adolescence. PLOS Computational Biology, 12(6), e1004953. https://doi.org/10.1371/journal.pcbi.1004953.CrossRefGoogle ScholarPubMed
Palminteri, S., Lebreton, M., Worbe, Y., Grabli, D., Hartmann, A., & Pessiglione, M. (2009). Pharmacological modulation of subliminal learning in Parkinson's and Tourette's syndromes. Proceedings of the National Academy of Sciences, 106(45), 1917919184. https://doi.org/10.1073/pnas.0904035106.CrossRefGoogle ScholarPubMed
Palminteri, S., Lebreton, M., Worbe, Y., Hartmann, A., Lehéricy, S., Vidailhet, M., … Pessiglione, M. (2011). Dopamine-dependent reinforcement of motor skill learning: Evidence from Gilles de la Tourette syndrome. Brain, 134(8), 22872301. https://doi.org/10.1093/brain/awr147.CrossRefGoogle ScholarPubMed
Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt Impulsiveness Scale. Journal of Clinical Psychology, 51(6), 768774.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Peters, E., Västfjäll, D., Gärling, T., & Slovic, P. (2006). Affect and decision making: A ‘hot’ topic. Journal of Behavioral Decision Making, 19(2), 7985. https://doi.org/10.1002/bdm.528.CrossRefGoogle Scholar
Pollak, Y., Oz, A., Neventsal, O., Rabi, O., Kitrossky, L., & Maeir, A. (2016). Do adolescents with attention-deficit/hyperactivity disorder show risk seeking? Disentangling probabilistic decision making by equalizing the favorability of alternatives. Journal of Abnormal Psychology, 125(3), 387398. https://doi.org/10.1037/abn0000140.CrossRefGoogle ScholarPubMed
Rae, C. L., Polyanska, L., Gould van Praag, C. D., Parkinson, J., Bouyagoub, S., Nagai, Y., … Critchley, H. D. (2018). Face perception enhances insula and motor network reactivity in Tourette syndrome. Brain, 141(11), 32493261. https://doi.org/10.1093/brain/awy254.CrossRefGoogle ScholarPubMed
R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.Google Scholar
Riba, J., Krämer, U. M., Heldmann, M., Richter, S., & Münte, T. F. (2008). Dopamine agonist increases risk taking but blunts reward-related brain activity. PLoS ONE, 3(6), e2479. https://doi.org/10.1371/journal.pone.0002479.CrossRefGoogle ScholarPubMed
Romer, D., Reyna, V. F., & Satterthwaite, T. D. (2017). Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context. Developmental Cognitive Neuroscience, 27, 1934. https://doi.org/10.1016/j.dcn.2017.07.007.CrossRefGoogle ScholarPubMed
Schluter, M. G., & Hodgins, D. C. (2021). Reward-related decision-making in current and past disordered gambling: Implications for impulsive choice and risk preference in the maintenance of gambling disorder. Frontiers in Behavioral Neuroscience, 15, 758329. https://doi.org/10.3389/fnbeh.2021.758329.CrossRefGoogle ScholarPubMed
Schonberg, T., Fox, C. R., & Poldrack, R. A. (2011). Mind the gap: Bridging economic and naturalistic risk-taking with cognitive neuroscience. Trends in Cognitive Sciences, 15(1), 1119. https://doi.org/10.1016/j.tics.2010.10.002.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 2233, quiz 34–57.Google ScholarPubMed
Shoham, R., Sonuga-Barke, E., Yaniv, I., & Pollak, Y. (2020). What drives risky behavior in ADHD: Insensitivity to its risk or fascination with its potential benefits? Journal of Attention Disorders, 25(14), 19882002. https://doi.org/10.1177/1087054720950820.CrossRefGoogle ScholarPubMed
Shoham, R., Sonuga-Barke, E. J. S., Aloni, H., Yaniv, I., & Pollak, Y. (2016). ADHD-associated risk taking is linked to exaggerated views of the benefits of positive outcomes. Scientific Reports, 6(1), 34833. https://doi.org/10.1038/srep34833.CrossRefGoogle ScholarPubMed
Sip, K. E., Gonzalez, R., Taylor, S. F., & Stern, E. R. (2018). Increased loss aversion in unmedicated patients with obsessive–compulsive disorder. Frontiers in Psychiatry, 8, 309. https://doi.org/10.3389/fpsyt.2017.00309.CrossRefGoogle ScholarPubMed
Sip, K. E., Muratore, A. F., & Stern, E. R. (2016). Effects of context on risk taking and decision times in obsessive–compulsive disorder. Journal of Psychiatric Research, 75, 8290. https://doi.org/10.1016/j.jpsychires.2015.12.002.CrossRefGoogle ScholarPubMed
Skagerlund, K., Forsblad, M., Slovic, P., & Västfjäll, D. (2020). The affect heuristic and risk perception – Stability across elicitation methods and individual cognitive abilities. Frontiers in Psychology, 11, 970. https://doi.org/10.3389/fpsyg.2020.00970.CrossRefGoogle ScholarPubMed
Starcke, K., Tuschen-Caffier, B., Markowitsch, H.-J., & Brand, M. (2009). Skin conductance responses during decisions in ambiguous and risky situations in obsessive–compulsive disorder. Cognitive Neuropsychiatry, 14(3), 199216. https://doi.org/10.1080/13546800902996831.CrossRefGoogle ScholarPubMed
Starcke, K., Tuschen-Caffier, B., Markowitsch, H. J., & Brand, M. (2010). Dissociation of decisions in ambiguous and risky situations in obsessive–compulsive disorder. Psychiatry Research, 175(1–2), 114120. https://doi.org/10.1016/j.psychres.2008.10.022.CrossRefGoogle ScholarPubMed
Tin Kam Ho. (1995). Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition, 1, 278–282. Montreal, Que., Canada: IEEE Comput. Soc. Press. https://doi.org/10.1109/ICDAR.1995.598994.CrossRefGoogle Scholar
Tobler, P. N., & Weber, E. U. (2014). Valuation for risky and uncertain choices. In Paul W. Glimcher and Ernst Fehr (eds.), Neuroeconomics (pp. 149172). Elsevier. https://doi.org/10.1016/B978-0-12-416008-8.00009-7.CrossRefGoogle Scholar
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297323. https://doi.org/10.1007/BF00122574.CrossRefGoogle Scholar
Tymula, A., Rosenberg Belmaker, L. A., Ruderman, L., Glimcher, P. W., & Levy, I. (2013). Like cognitive function, decision making across the life span shows profound age-related changes. Proceedings of the National Academy of Sciences, 110(42), 1714317148. https://doi.org/10.1073/pnas.1309909110.CrossRefGoogle ScholarPubMed
Virtanen, S., Sidorchuk, A., Fernández de la Cruz, L., Brander, G., Lichtenstein, P., Latvala, A., & Mataix-Cols, D. (2021). Association of Tourette syndrome and chronic tic disorder with subsequent risk of alcohol- or drug-related disorders, criminal convictions, and death: A population-based family study. Biological Psychiatry, 89(4), 407414. https://doi.org/10.1016/j.biopsych.2020.09.014.CrossRefGoogle ScholarPubMed
Wang, Y., Feng, T., & Keller, L. R. (2013). A further exploration of the uncertainty effect. Journal of Risk and Uncertainty, 47(3), 291310. https://doi.org/10.1007/s11166-013-9180-x.CrossRefGoogle Scholar
Weber, E. U., Siebenmorgen, N., & Weber, M. (2005). Communicating asset risk: How name recognition and the format of historic volatility information affect risk perception and investment decisions. Risk Analysis, 25(3), 597609. https://doi.org/10.1111/j.1539-6924.2005.00627.x.CrossRefGoogle ScholarPubMed
Worbe, Y., Marrakchi-Kacem, L., Lecomte, S., Valabregue, R., Poupon, F., Guevara, P., … Poupon, C. (2015). Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain, 138(2), 472482. https://doi.org/10.1093/brain/awu311.CrossRefGoogle ScholarPubMed
Worbe, Y., Sgambato-Faure, V., Epinat, J., Chaigneau, M., Tandé, D., François, C., … Tremblay, L. (2013). Towards a primate model of Gilles de la Tourette syndrome: Anatomo-behavioural correlation of disorders induced by striatal dysfunction. Cortex, 49(4), 11261140. https://doi.org/10.1016/j.cortex.2012.08.020.CrossRefGoogle ScholarPubMed
Yoon, D. Y., Gause, C. D., Leckman, J. F., & Singer, H. S. (2007). Frontal dopaminergic abnormality in Tourette syndrome: A postmortem analysis. Journal of the Neurological Sciences, 255(1–2), 5056. https://doi.org/10.1016/j.jns.2007.01.069.CrossRefGoogle ScholarPubMed
Zhang, L., Dong, Y., Ji, Y., Zhu, C., Yu, F., Ma, H., … Wang, K. (2015). Dissociation of decision making under ambiguity and decision making under risk: A neurocognitive endophenotype candidate for obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57, 6068. https://doi.org/10.1016/j.pnpbp.2014.09.005.CrossRefGoogle Scholar
Supplementary material: File

Atkinson-Clement et al. supplementary material

Atkinson-Clement et al. supplementary material

Download Atkinson-Clement et al. supplementary material(File)
File 466.5 KB