Skip to main content Accessibility help

Cue reactivity towards bodies in anorexia nervosa – common and differential effects in adolescents and adults

  • S. Horndasch (a1), O. Kratz (a1), J. Van Doren (a1), H. Graap (a2), R. Kramer (a1), G. H. Moll (a1) and H. Heinrich (a1) (a3)...



Aberrant reward mechanisms with regard to slim body shapes are discussed in patients with anorexia nervosa (AN). The aim of the present study was to examine of cue reactivity toward body shapes in AN via the late positive potential (LPP), an event-related electroencephalography (EEG) component. By including adolescents and adults, aspects of development and chronification could be studied (2 × 2 design).


Thirty-two female AN patients (19 adolescents and 13 adults) and 37 control participants (16 adolescents and 21 adults) were included. Standardized photographic stimuli showing women's bodies in underwear from five body mass index (BMI) categories (extremely underweight to extremely overweight) were presented. During picture evaluation, EEG activity was recorded (10–20 system). The LPP was measured in two time windows characterized by different topographies (450–700 ms: posterior; 1000–1300 ms: central).


Regarding the posterior component, LPP amplitudes were clearly reduced in adult but not in adolescent patients; for both time windows the LPP showed differential patterns over BMI categories for patients and controls. Regarding the central component, a highly significant linear decrease from extremely underweight to extremely overweight body shapes was revealed in patients and no significant modulation in control participants.


Adolescent and adult patients show increased sustained attention toward extremely underweight bodies. In chronically ill patients, this bias appears to be accompanied by generally reduced automatic attention. The LPP findings provide a differentiated picture of aberrant cue reactivity which could be interpreted as motivated attention toward body shapes in AN.


Corresponding author

*Address for correspondence: S. Horndasch, M.D., Department of Child and Adolescent Mental Health, University of Erlangen-Nuremberg, Schwabachanlage 6/10, 91054 Erlangen, Germany. (Email:


Hide All
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Publishing: Arlington, VA.
Arcelus, J, Mitchell, AJ, Wales, J, Nielsen, S (2011). Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Archives of General Psychiatry 68, 724731.
Baluch, B, Furnham, A, Huszcza, A (1997). Perception of body shapes by anorexics and mature and teenage females. Journal of Clinical Psychology 53, 167175.
Beck, AT, Steer, RA, Brown, GK (1996). Beck Depression Inventory–II (BDI–II). Harcourt Assessment Inc.: San Antonio, TX.
Brandeis, D, van Leeuwen, TH, Rubia, K, Vitacco, D, Steger, J, Pascual-Marqui, RD, Steinhausen, HC (1998). Neuroelectric mapping reveals precursor of stop failures in children with attention deficits. Behavioral Brain Research 94, 111125.
Cuthbert, BN, Schupp, HT, Bradley, MM, Birbaumer, N, Lang, PJ (2000). Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biological Psychology 52, 95111.
Döpfner, M, Görtz-Dorten, A, Lehmkuhl, G (2008). DISYPS II Diagnostik-System Für Psychische Störungen Nach ICD-10 und DSM-IV für Kinder und Jugendliche II. Huber: Bern.
Fladung, AK, Gron, G, Grammer, K, Herrnberger, B, Schilly, E, Grasteit, S, Wolf, RC, Walter, H, von Wietersheim, J (2010). A neural signature of anorexia nervosa in the ventral striatal reward system. American Journal of Psychiatry 167, 206212.
Fladung, AK, Schulze, UM, Scholl, F, Bauer, K, Gron, G (2013). Role of the ventral striatum in developing anorexia nervosa. Translational Psychiatry 3, e315.
Franken, IH, Dietvorst, RC, Hesselmans, M, Franzek, EJ, van de Wetering, BJ, Van Strien, JW (2008). Cocaine craving is associated with electrophysiological brain responses to cocaine-related stimuli. Addiction Biology 13, 386392.
Gable, PA, Adams, DL (2013). Nonaffective motivation modulates the sustained LPP (1,000–2,000 ms). Psychophysiology 50, 12511254.
Gale, L, Channon, S, Larner, M, James, D (2015). Experiences of using pro-eating disorder websites: a qualitative study with service users in NHS eating disorder services. Eating and Weight Disorders 21, 427434.
Garner, DM (1991). Eating Disorder Inventory-2 Manual. Psychological Assessment Resources: Odessa, Florida.
Godier, LR, Park, RJ (2014). Compulsivity in anorexia nervosa: a transdiagnostic concept. Frontiers in Psychology 5, 778.
Gratton, G, Coles, MG, Donchin, E (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology 55, 468484.
Hajcak, G, Dunning, JP, Foti, D (2009). Motivated and controlled attention to emotion: time-course of the late positive potential. Clinical Neurophysiology 120, 505510.
Hajcak, G, MacNamara, A, Olvet, DM (2010). Event-related potentials, emotion, and emotion regulation: an integrative review. Developmental Neuropsychology 35, 129155.
Hajcak, G, Nieuwenhuis, S (2006). Reappraisal modulates the electrocortical response to unpleasant pictures. Cognitive, Affective and Behavioral Neuroscience 6, 291297.
Hatch, A, Madden, S, Kohn, MR, Clarke, S, Touyz, S, Gordon, E, Williams, LM (2010). Emotion brain alterations in anorexia nervosa: a candidate biological marker and implications for treatment. Journal of Psychiatry and Neuroscience 35, 267274.
Herrmann, MJ, Weijers, HG, Wiesbeck, GA, Boning, J, Fallgatter, AJ (2001). Alcohol cue-reactivity in heavy and light social drinkers as revealed by event-related potentials. Alcohol and Alcoholism 36, 588593.
Horndasch, S, Heinrich, H, Kratz, O, Mai, S, Graap, H, Moll, GH (2015). Perception and evaluation of women's bodies in adolescents and adults with anorexia nervosa. European Archives of Psychiatry and Clinical Neuroscience 265, 677687.
Horndasch, S, Heinrich, H, Kratz, O, Moll, GH (2012). The late positive potential as a marker of motivated attention to underweight bodies in girls with anorexia nervosa. Journal of Psychosomatic Research 73, 443447.
Kaye, WH, Wierenga, CE, Bailer, UF, Simmons, AN, Bischoff-Grethe, A (2013). Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends in Neurosciences 36, 110120.
Keating, C (2011). Sex differences precipitating anorexia nervosa in females: the estrogen paradox and a novel framework for targeting sex-specific neurocircuits and behavior. Current Topics in Behavioral Neurosciences 8, 189207.
Keil, A, Bradley, MM, Hauk, O, Rockstroh, B, Elbert, T, Lang, PJ (2002). Large-scale neural correlates of affective picture processing. Psychophysiology 39, 641649.
Kekic, M, Boysen, E, Campbell, IC, Schmidt, U (2016). A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. Journal of Psychiatric Research 74, 7086.
Kujawa, A, Klein, DN, Proudfit, GH (2013). Two-year stability of the late positive potential across middle childhood and adolescence. Biological Psychology 94, 290296.
Langeslag, SJ, van Strien, JW (2013). Up-regulation of emotional responses to reward-predicting stimuli: an ERP study. Biological Psychology 94, 228233.
MacNamara, A, Verges, A, Kujawa, A, Fitzgerald, KD, Monk, CS, Phan, KL (2016). Age-related changes in emotional face processing across childhood and into young adulthood: evidence from event-related potentials. Developmental Psychobiology 58, 2738.
Mai, S, Gramann, K, Herbert, BM, Friederich, HC, Warschburger, P, Pollatos, O (2015). Electrophysiological evidence for an attentional bias in processing body stimuli in bulimia nervosa. Biological Psychology 108, 105114.
McDonough, BE, Warren, CA (2001). Effects of 12-h tobacco deprivation on event-related potentials elicited by visual smoking cues. Psychopharmacology (Berl) 154, 282291.
Michalowski, JM, Pane-Farre, CA, Low, A, Hamm, AO (2015). Brain dynamics of visual attention during anticipation and encoding of threat- and safe-cues in spider-phobic individuals. Social Cognitive and Affective Neuroscience 10, 11771186.
O'Hara, CB, Campbell, IC, Schmidt, U (2015). A reward-centred model of anorexia nervosa: a focussed narrative review of the neurological and psychophysiological literature. Neuroscience and Biobehavioral Reviews 52, 131152.
Olofsson, JK, Nordin, S, Sequeira, H, Polich, J (2008). Affective picture processing: an integrative review of ERP findings. Biological Psychology 77, 247265.
Park, RJ, Godier, LR, Cowdrey, FA (2014). Hungry for reward: how can neuroscience inform the development of treatment for Anorexia Nervosa? Behavior Research and Therapy 62, 4759.
Parvaz, MA, Moeller, SJ, Malaker, P, Sinha, R, Alia-Klein, N, Goldstein, RZ (2016). Abstinence reverses EEG-indexed attention bias between drug-related and pleasant stimuli in cocaine-addicted individuals. Journal of Psychiatry and Neurosciences 41, 150358.
Pollatos, O, Herbert, BM, Schandry, R, Gramann, K (2008). Impaired central processing of emotional faces in anorexia nervosa. Psychosomatic Medicine 70, 701708.
Price, TF, Dieckman, LW, Harmon-Jones, E (2012). Embodying approach motivation: body posture influences startle eyeblink and event-related potential responses to appetitive stimuli. Biological Psychology 90, 211217.
Robinson, JD, Versace, F, Engelmann, JM, Cui, Y, Slapin, A, Oum, R, Cinciripini, PM (2015). The motivational salience of cigarette-related stimuli among former, never, and current smokers. Experimental and Clinical Psychopharmacology 23, 3748.
Rodgers, RF, Lowy, AS, Halperin, DM, Franko, DL (2016). A meta-analysis examining the influence of pro-eating disorder websites on body image and eating pathology. European Eating Disorders Review 24, 38.
Sabatinelli, D, Keil, A, Frank, DW, Lang, PJ (2013). Emotional perception: correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biological Psychology 92, 513519.
Scheurink, AJ, Boersma, GJ, Nergardh, R, Sodersten, P (2010). Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiology and Behavior 100, 490495.
Schneider, S, Margraf, J (2006). Diagnostisches Interview bei Psychischen Störungen. Springer: Berlin.
Schupp, HT, Flaisch, T, Stockburger, J, Junghofer, M (2006). Emotion and attention: event-related brain potential studies. Progress in Brain Research 156, 3151.
Segalowitz, SJ, Santesso, DL, Jetha, MK (2010). Electrophysiological changes during adolescence: a review. Brain and Cognition 72, 86100.
Seitz, J, Herpertz-Dahlmann, B, Konrad, K (2016). Brain morphological changes in adolescent and adult patients with anorexia nervosa. Journal of Neural Transmission (Vienna) 123, 949959.
Smink, FR, van Hoeken, D, Hoek, HW (2012). Epidemiology of eating disorders: incidence, prevalence and mortality rates. Current Psychiatry Reports 14, 406414.
Thompson, JK, Heinberg, LJ, Tantleff, S (1991). The physical appearance comparison scale (PACS). Behavior Therapist 14, 174.
Val-Laillet, D, Aarts, E, Weber, B, Ferrari, M, Quaresima, V, Stoeckel, LE, Alonso-Alonso, M, Audette, M, Malbert, CH, Stice, E (2015). Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage: Clinical 8, 131.
Watson, KK, Werling, DM, Zucker, NL, Platt, ML (2010). Altered social reward and attention in anorexia nervosa. Frontiers in Psychology 1, 36.
Wolfling, K, Morsen, CP, Duven, E, Albrecht, U, Grusser, SM, Flor, H (2011). To gamble or not to gamble: at risk for craving and relapse–learned motivated attention in pathological gambling. Biological Psychology 87, 275281.
Zink, CF, Weinberger, DR (2010). Cracking the moody brain: the rewards of self starvation. Nature Medicine 16, 13821383.


Cue reactivity towards bodies in anorexia nervosa – common and differential effects in adolescents and adults

  • S. Horndasch (a1), O. Kratz (a1), J. Van Doren (a1), H. Graap (a2), R. Kramer (a1), G. H. Moll (a1) and H. Heinrich (a1) (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed