Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T04:13:22.292Z Has data issue: false hasContentIssue false

Association between cognitive phenotype in unaffected siblings and prospective 3- and 6-year clinical outcome in their proband affected by psychosis

Published online by Cambridge University Press:  15 April 2020

Thijs J. Burger*
Affiliation:
Arkin, Institute for Mental Health, Amsterdam, the Netherlands Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
Frederike Schirmbeck
Affiliation:
Arkin, Institute for Mental Health, Amsterdam, the Netherlands Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
Jentien M. Vermeulen
Affiliation:
Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
Piotr J. Quee
Affiliation:
Department of Neurorehabilitation, Rijndam Revalidatie, Rotterdam, the Netherlands
Mariken B. de Koning
Affiliation:
Arkin, Institute for Mental Health, Amsterdam, the Netherlands Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
Richard Bruggeman
Affiliation:
University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Groningen, the Netherlands Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, the Netherlands
Lieuwe de Haan
Affiliation:
Arkin, Institute for Mental Health, Amsterdam, the Netherlands Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
*
Author for correspondence: Thijs J. Burger, E-mail: thijs.burger@arkin.nl

Abstract

Background

Cognitive alterations are a central and heterogeneous trait in psychotic disorders, driven by environmental, familial and illness-related factors. In this study, we aimed to prospectively investigate the impact of high familial risk for cognitive alterations, unconfounded by illness-related factors, on symptomatic outcomes in patients.

Methods

In total, 629 probands with non-affective psychosis and their sibling not affected by psychosis were assessed at baseline, 3- and 6-year follow-up. Familial cognitive risk was modeled by three cognitive subtypes (‘normal’, ‘mixed’ and ‘impaired’) in the unaffected siblings. Generalized linear mixed models assessed multi-cross-sectional associations between the sibling cognitive subtype and repeated measures of proband symptoms across all assessments. Between-group differences over time were assessed by adding an interaction effect of time and sibling cognitive subtype.

Results

Probands affected by psychosis with a sibling of the impaired cognitive subtype were less likely to be in symptomatic remission and showed more disorganization across all time points. When assessing differences over time, probands of siblings with the impaired cognitive subtype showed less remission and less improvement of disorganization after 3 and 6 years relative to the other subtypes. They also showed less reduction of positive, negative and excitement symptoms at 6-year follow-up compared to probands with a sibling of the normal cognitive subtype.

Conclusions

Cross-sibling pathways from higher levels of familial cognitive vulnerability to worse long-term outcomes may be informative in identifying cognition-related environmental and genetic risks that impact psychotic illness heterogeneity over time.

Type
Original Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Therese van Amelsvoort6, Agna A. Bartels-Velthuis4, Richard Bruggeman4,5, Wiepke Cahn7,8, Lieuwe de Haan1,2, Frederike Schirmbeck1,2, Claudia J.P. Simons6,9, Jim van Os7,10

6

Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, the Netherlands

7

Department of Psychiatry, University Medical Center Utrecht, Brain Centre Rudolf Magnus, Utrecht University, Utrecht, the Netherlands

8

Altrecht, General Mental Health Care, Utrecht, the Netherlands

9

GGzE Institute for Mental Health Care, Eindhoven, the Netherlands

10

Department of Psychosis Studies, King's College London, King's Health Partners, Institute of Psychiatry, London, UK

References

Aas, M., Dazzan, P., Mondelli, V., Melle, I., Murray, R. M., & Pariante, C. M. (2014). A systematic review of cognitive function in first-episode psychosis, including a discussion on childhood trauma, stress, and inflammation. Frontiers in Psychiatry, 4, 182.CrossRefGoogle Scholar
Ananth, C. V., & Schisterman, E. F. (2017). Confounding, causality, and confusion: The role of intermediate variables in interpreting observational studies in obstetrics. American Journal of Obstetrics and Gynecology, 217, 167175.CrossRefGoogle Scholar
Andreasen, N. C., Carpenter, W. T. Jr., Kane, J. M., Lasser, R. A., Marder, S. R., & Weinberger, D. R. (2005). Remission in schizophrenia: Proposed criteria and rationale for consensus. American Journal of Psychiatry 162, 441449.CrossRefGoogle ScholarPubMed
Bates, D., Machler, M., Bolker, B. M., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148.CrossRefGoogle Scholar
Bigdeli, T. B., Nuechterlein, K. H., Sugar, C. A., Subotnik, K. L., Kubarych, T., Neale, M. C., … Asarnow, R. F. (2019). Evidence of shared familial factors influencing neurocognitive endophenotypes in adult- and childhood-onset schizophrenia. Psychological Medicine, 18. https://doi.org/10.1017/S0033291719001715.Google ScholarPubMed
Blokland, G. A. M., Mesholam-Gately, R. I., Toulopoulou, T., Del Re, E. C., Lam, M., DeLisi, L. E., … Petryshen, T. L. (2017). Heritability of neuropsychological measures in schizophrenia and nonpsychiatric populations: A systematic review and meta-analysis. Schizophrenia Bulletin, 43, 788800.CrossRefGoogle ScholarPubMed
Blyler, C. R., Gold, J. M., Iannone, V. N., & Buchanan, R. W. (2000). Short form of the WAIS-III for use with patients with schizophrenia. Schizophrenia Research, 46, 209215.CrossRefGoogle ScholarPubMed
Bora, E. (2015). Neurodevelopmental origin of cognitive impairment in schizophrenia. Psychological Medicine, 45, 19.CrossRefGoogle Scholar
Bora, E., & Murray, R. M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: Do the cognitive deficits progress over, or after, the onset of psychosis? Schizophrenia Bulletin, 40, 744755.CrossRefGoogle ScholarPubMed
Brand, N., & Jolles, J. (1985). Learning and retrieval rate of words presented auditorily and visually. Journal of General Psychology, 112, 201210.CrossRefGoogle ScholarPubMed
Caspi, A., & Moffitt, T. E. (2018). All for one and one for all: Mental disorders in one dimension. American Journal of Psychiatry, 175, 831844.CrossRefGoogle ScholarPubMed
Chang, W. C., Ming Hui, C. L., Yan Wong, G. H., Wa Chan, S. K., Ming Lee, E. H., & Hai Chen, E. Y. (2013). Symptomatic remission and cognitive impairment in first-episode schizophrenia: A prospective 3-year follow-up study. Journal of Clinical Psychiatry, 74, e1046e1053.CrossRefGoogle ScholarPubMed
Compton, M. T., Chien, V. H., & Bollini, A. M. (2007). Psychometric properties of the Brief Version of the Schizotypal Personality Questionnaire in relatives of patients with schizophrenia-spectrum disorders and non-psychiatric controls. Schizophrenia Research, 91, 122131.CrossRefGoogle ScholarPubMed
Deary, I. J., & Johnson, W. (2010). Intelligence and education: Causal perceptions drive analytic processes and therefore conclusions. International Journal of Epidemiology, 39, 13621369.CrossRefGoogle ScholarPubMed
Dickinson, D., Zaidman, S. R., Giangrande, E. J., Eisenberg, D. P., Gregory, M. D., & Berman, K. F. (2019). Distinct polygenic score profiles in schizophrenia subgroups with different trajectories of cognitive development. American Journal of Psychiatry, 177, 298307.CrossRefGoogle ScholarPubMed
Dickson, H., Laurens, K. R., Cullen, A. E., & Hodgins, S. (2012). Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychological Medicine, 42, 743755.CrossRefGoogle ScholarPubMed
Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York: Wiley.Google Scholar
Eack, S. M., Mermon, D. E., Montrose, D. M., Miewald, J., Gur, R. E., Gur, R. C., … Keshavan, M. S. (2010). Social cognition deficits among individuals at familial high risk for schizophrenia. Schizophrenia Bulletin, 36, 10811088.CrossRefGoogle ScholarPubMed
Esterberg, M. L., Trotman, H. D., Holtzman, C., Compton, M. T., & Walker, E. F. (2010). The impact of a family history of psychosis on age-at-onset and positive and negative symptoms of schizophrenia: A meta-analysis. Schizophrenia Research, 120, 121130.CrossRefGoogle ScholarPubMed
Everitt, B. (2011). Cluster analysis. Oxford, UK: John Wiley & Sons.CrossRefGoogle Scholar
Feigenson, K. A., Gara, M. A., Roche, M. W., & Silverstein, S. M. (2014). Is disorganization a feature of schizophrenia or a modifying influence: Evidence of covariation of perceptual and cognitive organization in a non-patient sample. Psychiatry Research, 217, 18.CrossRefGoogle ScholarPubMed
Fett, A. K., & Maat, A. (2013). Social cognitive impairments and psychotic symptoms: What is the nature of their association? Schizophrenia Bulletin, 39, 7785.CrossRefGoogle ScholarPubMed
Fu, S., Czajkowski, N., Rund, B. R., & Torgalsboen, A. K. (2017). The relationship between level of cognitive impairments and functional outcome trajectories in first-episode schizophrenia. Schizophrenia Research, 190, 144149.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.CrossRefGoogle ScholarPubMed
Gottschling, J., Hahn, E., Beam, C. R., Spinath, F. M., Carroll, S., & Turkheimer, E. (2019). Socioeconomic status amplifies genetic effects in middle childhood in a large German twin sample. Intelligence, 72, 2027.CrossRefGoogle Scholar
Green, M. F., Kern, R. S., & Heaton, R. K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: Implications for MATRICS. Schizophrenia Research, 72, 4151.CrossRefGoogle ScholarPubMed
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13, 6573.CrossRefGoogle ScholarPubMed
Hakulinen, C., Webb, R. T., Pedersen, C. B., Agerbo, E., & Mok, P. L. H. (2020). Association between parental income during childhood and risk of schizophrenia later in life. JAMA Psychiatry, 77, 1724.CrossRefGoogle ScholarPubMed
Islam, M. A., Habtewold, T. D., van Es, F. D., Quee, P. J., van den Heuvel, E. R., Alizadeh, B. Z., & Bruggeman, R. (2018). Long-term cognitive trajectories and heterogeneity in patients with schizophrenia and their unaffected siblings. Acta Psychiatrica Scandinavica, 138, 591604.CrossRefGoogle ScholarPubMed
Jongsma, H. E., Gayer-Anderson, C., Lasalvia, A., Quattrone, D., Mule, A., Szoke, A., … Kirkbride, J. B. (2018). Treated incidence of psychotic disorders in the multinational EU-GEI study. JAMA Psychiatry, 75, 3646.CrossRefGoogle ScholarPubMed
Kahn, R. S., & Keefe, R. S. (2013). Schizophrenia is a cognitive illness: Time for a change in focus. JAMA Psychiatry, 70, 11071112.CrossRefGoogle ScholarPubMed
Kakela, J., Panula, J., Oinas, E., Hirvonen, N., Jaaskelainen, E., & Miettunen, J. (2014). Family history of psychosis and social, occupational and global outcome in schizophrenia: A meta-analysis. Acta Psychiatrica Scandinavica, 130, 269278.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261276.CrossRefGoogle Scholar
Keri, S., & Janka, Z. (2004). Critical evaluation of cognitive dysfunctions as endophenotypes of schizophrenia. Acta Psychiatrica Scandinavica, 110, 8391.CrossRefGoogle ScholarPubMed
Khandaker, G. M., Barnett, J. H., White, I. R., & Jones, P. B. (2011). A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophrenia Research, 132, 220227.CrossRefGoogle Scholar
Khandaker, G. M., Dalman, C., Kappelmann, N., Stochl, J., Dal, H., Kosidou, K., … Karlsson, H. (2018). Association of childhood infection with IQ and adult nonaffective psychosis in Swedish men: A population-based longitudinal cohort and co-relative study. JAMA Psychiatry, 75, 356362.CrossRefGoogle ScholarPubMed
Korver, N., Quee, P. J., Boos, H. B., Simons, C. J., de Haan, L., & Investigators, G. (2012). Genetic Risk and Outcome of Psychosis (GROUP), a multi-site longitudinal cohort study focused on gene-environment interaction: Objectives, sample characteristics, recruitment and assessment methods. International Journal of Methods in Psychiatric Research, 21, 205221.CrossRefGoogle ScholarPubMed
Lambert, M., Karow, A., Leucht, S., Schimmelmann, B. G., & Naber, D. (2010). Remission in schizophrenia: Validity, frequency, predictors, and patients' perspective 5 years later. Dialogues in Clinical Neuroscience, 12, 393407.Google ScholarPubMed
Lataster, T., Collip, D., Lardinois, M., van Os, J., & Myin-Germeys, I. (2010). Evidence for a familial correlation between increased reactivity to stress and positive psychotic symptoms. Acta Psychiatrica Scandinavica, 122, 395404.CrossRefGoogle ScholarPubMed
Lataster, T., Verweij, K., Viechtbauer, W., & Group (2014). Effect of illness expression and liability on familial associations of clinical and subclinical psychosis phenotypes. Acta Psychiatrica Scandinavica, 129, 4453.CrossRefGoogle ScholarPubMed
Liu, Y., Wang, G., Jin, H., Lyu, H., Liu, Y., Guo, W., … Davis, J. M. (2019). Cognitive deficits in subjects at risk for psychosis, first-episode and chronic schizophrenia patients. Psychiatry Research, 274, 235242.CrossRefGoogle ScholarPubMed
Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49, 14941502.CrossRefGoogle ScholarPubMed
Mansueto, G., Schruers, K., Cosci, F., & van Os, J. (2019). Childhood adversities and psychotic symptoms: The potential mediating or moderating role of neurocognition and social cognition. Schizophrenia Research, 206, 183193.CrossRefGoogle ScholarPubMed
McCleery, A., Green, M. F., Hellemann, G. S., Baade, L. E., Gold, J. M., Keefe, R. S., … Nuechterlein, K. H. (2015). Latent structure of cognition in schizophrenia: A confirmatory factor analysis of the MATRICS Consensus Cognitive Battery (MCCB). Psychological Medicine, 45, 26572666.CrossRefGoogle Scholar
Meijer, J., Simons, C. J., Quee, P. J., Verweij, K., & Group (2012). Cognitive alterations in patients with non-affective psychotic disorder and their unaffected siblings and parents. Acta Psychiatrica Scandinavica, 125, 6676.CrossRefGoogle ScholarPubMed
Morey, R. D. (2008). Confidence Intervals from Normalized Data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 6164.CrossRefGoogle Scholar
Mucci, A., Galderisi, S., Green, M. F., Nuechterlein, K., Rucci, P., Gibertoni, D., … Maj, M. (2018). Familial aggregation of MATRICS consensus cognitive battery scores in a large sample of outpatients with schizophrenia and their unaffected relatives. Psychological Medicine, 48, 13591366.CrossRefGoogle Scholar
Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia Research, 72, 2939.CrossRefGoogle Scholar
Nuechterlein, K. H., & Dawson, M. E. (1984). Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10, 160203.CrossRefGoogle ScholarPubMed
Omachi, Y., & Sumiyoshi, T. (2018). Dose reduction/discontinuation of antipsychotic drugs in psychosis; effect on cognition and functional outcomes. Frontiers in Psychiatry, 9, 447.CrossRefGoogle ScholarPubMed
Palmer, B. W., Dawes, S. E., & Heaton, R. K. (2009). What do we know about neuropsychological aspects of schizophrenia? Neuropsychology Review, 19, 365384.CrossRefGoogle ScholarPubMed
Quee, P. J., Alizadeh, B. Z., Aleman, A., van den Heuvel, E. R., & Investigators, G. (2014). Cognitive subtypes in non-affected siblings of schizophrenia patients: Characteristics and profile congruency with affected family members. Psychological Medicine, 44, 395405.CrossRefGoogle ScholarPubMed
R Core Team (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Reichenberg, A., Weiser, M., Rapp, M. A., Rabinowitz, J., Caspi, A., Schmeidler, J., … Davidson, M. (2005). Elaboration on premorbid intellectual performance in schizophrenia: Premorbid intellectual decline and risk for schizophrenia. Archives of General Psychiatry, 62, 12971304.CrossRefGoogle ScholarPubMed
Robinson, D. G., Woerner, M. G., McMeniman, M., Mendelowitz, A., & Bilder, R. M. (2004). Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. American Journal of Psychiatry, 161, 473479.CrossRefGoogle ScholarPubMed
Schisterman, E. F., Cole, S. R., & Platt, R. W. (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology (Cambridge, Mass.), 20, 488495.CrossRefGoogle ScholarPubMed
Spano, R. (2018). We are family: Specifying the unique contribution of abuse and neglect of siblings on the prevalence, severity, and chronicity of maltreatment in the household. Journal of Interpersonal Violence, 33, 24202438.CrossRefGoogle ScholarPubMed
Stefanovics, E. A., Elkis, H., Zhening, L., Zhang, X. Y., & Rosenheck, R. A. (2014). A cross-national factor analytic comparison of three models of PANSS symptoms in schizophrenia. Psychiatry Research, 219, 283289.CrossRefGoogle Scholar
Stouten, L. H., Veling, W., van der Helm, M., Laan, W., & van der Gaag, M. (2013). Cognitive deficits and ethnicity: A cohort study of early psychosis patients in The Netherlands. Social Psychiatry and Psychiatric Epidemiology, 48, 3747.CrossRefGoogle ScholarPubMed
Szöke, A., SchÜRhoff, F., Mathieu, F., Meary, A., Ionescu, S., & Leboyer, M. (2005). Tests of executive functions in first-degree relatives of schizophrenic patients: A meta-analysis. Psychological Medicine, 35, 771782.CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., Briley, D. A., & Harden, K. P. (2013). Genetic and environmental influences on cognition across development and context. Current Directions in Psychological Science, 22, 349355.CrossRefGoogle Scholar
van der Gaag, M., Hoffman, T., Remijsen, M., Hijman, R., de Haan, L., van Meijel, B., … Wiersma, D. (2006). The five-factor model of the positive and negative syndrome scale II: A ten-fold cross-validation of a revised model. Schizophrenia Research, 85, 280287.CrossRefGoogle ScholarPubMed
van Os, J., & Reininghaus, U. (2016). Psychosis as a transdiagnostic and extended phenotype in the general population. World Psychiatry, 15, 118124.CrossRefGoogle ScholarPubMed
Ventura, J., Thames, A. D., Wood, R. C., Guzik, L. H., & Hellemann, G. S. (2010). Disorganization and reality distortion in schizophrenia: A meta-analysis of the relationship between positive symptoms and neurocognitive deficits. Schizophrenia Research, 121, 114.CrossRefGoogle ScholarPubMed
Volkow, N. D., Swanson, J. M., Evins, A. E., DeLisi, L. E., Meier, M. H., Gonzalez, R., … Baler, R. (2016). Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: A review. JAMA Psychiatry, 73, 292297.CrossRefGoogle ScholarPubMed
Zahid, M. A., & Ohaeri, J. U. (2010). Relationship of family caregiver burden with quality of care and psychopathology in a sample of Arab subjects with schizophrenia. BMC Psychiatry, 10, 71.CrossRefGoogle Scholar
Supplementary material: File

Burger et al. supplementary material

Burger et al. supplementary material 1

Download Burger et al. supplementary material(File)
File 378.8 KB
Supplementary material: File

Burger et al. supplementary material

Burger et al. supplementary material 2

Download Burger et al. supplementary material(File)
File 37 KB