Skip to main content Accessibility help
×
×
Home

Assessing the evidence for shared genetic risks across psychiatric disorders and traits

  • Joanna Martin (a1) (a2), Mark J. Taylor (a1) and Paul Lichtenstein (a1)

Abstract

Genetic influences play a significant role in risk for psychiatric disorders, prompting numerous endeavors to further understand their underlying genetic architecture. In this paper, we summarize and review evidence from traditional twin studies and more recent genome-wide molecular genetic analyses regarding two important issues that have proven particularly informative for psychiatric genetic research. First, emerging results are beginning to suggest that genetic risk factors for some (but not all) clinically diagnosed psychiatric disorders or extreme manifestations of psychiatric traits in the population share genetic risks with quantitative variation in milder traits of the same disorder throughout the general population. Second, there is now evidence for substantial sharing of genetic risks across different psychiatric disorders. This extends to the level of characteristic traits throughout the population, with which some clinical disorders also share genetic risks. In this review, we summarize and evaluate the evidence for these two issues, for a range of psychiatric disorders. We then critically appraise putative interpretations regarding the potential meaning of genetic correlation across psychiatric phenotypes. We highlight several new methods and studies which are already using these insights into the genetic architecture of psychiatric disorders to gain additional understanding regarding the underlying biology of these disorders. We conclude by outlining opportunities for future research in this area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessing the evidence for shared genetic risks across psychiatric disorders and traits
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessing the evidence for shared genetic risks across psychiatric disorders and traits
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessing the evidence for shared genetic risks across psychiatric disorders and traits
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Joanna Martin, E-mail: joanna.martin@ki.se

References

Hide All
Anttila, V, Bulik-Sullivan, B, Finucane, HK, Bras, J, Duncan, L, Escott-Price, V et al. (2017) Analysis of shared heritability in common disorders of the brain. bioRxiv, Cold Spring Harbor Labs Journals. doi: 10.1101/048991.
Bigdeli, TB, Bacanu, S-A, Webb, BT, Walsh, D, O'Neill, FA, Fanous, AH et al. (2014) Molecular validation of the schizophrenia spectrum. Schizophrenia Bulletin, Oxford University Press 40, 6065. doi: 10.1093/schbul/sbt122.
Bolhuis, K, McAdams, TA, Monzani, B, Gregory, AM, Mataix-Cols, D, Stringaris, A et al. (2014) Aetiological overlap between obsessive-compulsive and depressive symptoms: a longitudinal twin study in adolescents and adults. Psychological Medicine 44, 14391449. doi: 10.1017/S0033291713001591.
Bralten, J, van Hulzen, KJ, Martens, MB, Galesloot, TE, Arias Vasquez, A, Kiemeney, LA et al. (2017) Autism spectrum disorders and autistic traits share genetics and biology. Molecular Psychiatry, Nature Publishing Group. doi: 10.1038/mp.2017.98.
Brikell, I, Larsson, H, Lu, Y, Pettersson, E, Chen, Q, Kuja-Halkola, R et al. (2017) The contribution of common genetic risk variants for ADHD to a general factor of childhood psychopathology. bioRxiv, Cold Spring Harbor Laboratory. doi: 10.1101/193573.
Bulik-Sullivan, B, Finucane, HK, Anttila, V, Gusev, A, Day, FR, Loh, P-R et al. (2015 a) An atlas of genetic correlations across human diseases and traits. Nature Genetics, Nature Research 47, 12361241. doi: 10.1038/ng.3406.
Bulik-Sullivan, B, Loh, P-R, Finucane, HK, Ripke, S, Yang, J, Patterson, N et al. (2015 b) LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, Nature Research 47, 291295. doi: 10.1038/ng.3211.
Cardno, AG, Rijsdijk, FV, Sham, PC, Murray, RM and McGuffin, P (2002) A twin study of genetic relationships between psychotic symptoms. American Journal of Psychiatry, American Psychiatric Publishing 159, 539545. doi: 10.1176/appi.ajp.159.4.539.
Caspi, A, Houts, RM, Belsky, DW, Goldman-Mellor, SJ, Harrington, H, Israel, S et al. (2014) The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science 2, 119137. doi: 10.1177/2167702613497473.
Cederlöf, M, Ohlsson Gotby, A, Larsson, H, Serlachius, E, Boman, M, Långström, N et al. (2014 a) Klinefelter syndrome and risk of psychosis, autism and ADHD. Journal of Psychiatric Research 48, 128130.
Cederlöf, M, Ostberg, P, Pettersson, E, Anckarsäter, H, Gumpert, C, Lundström, S et al. (2014 b) Language and mathematical problems as precursors of psychotic-like experiences and juvenile mania symptoms. Psychological Medicine 44, 12931302. doi: 10.1017/S0033291713002018.
Cederlöf, M, Thornton, LM, Baker, J, Lichtenstein, P, Larsson, H, Rück, C et al. (2015) Etiological overlap between obsessive-compulsive disorder and anorexia nervosa: a longitudinal cohort, multigenerational family and twin study. World Psychiatry 14, 333338. doi: 10.1002/wps.20251.
Chen, T-J, Ji, C-Y, Wang, S-S, Lichtenstein, P, Larsson, H and Chang, Z (2016) Genetic and environmental influences on the relationship between ADHD symptoms and internalizing problems: a Chinese twin study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 171, 931937. doi: 10.1002/ajmg.b.32411.
Clarke, T-K, Lupton, MK, Fernandez-Pujals, AM, Starr, J, Davies, G, Cox, S et al. (2016) Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Molecular Psychiatry, Nature Publishing Group 21, 419425. doi: 10.1038/mp.2015.12.
Cole, J, Ball, HA, Martin, NC, Scourfield, J and Mcguffin, P (2009) Genetic overlap between measures of hyperactivity/inattention and mood in children and adolescents. Journal of the American Academy of Child & Adolescent Psychiatry 48, 10941101. doi: 10.1097/CHI.0b013e3181b7666e.
Colvert, E, Tick, B, McEwen, F, Stewart, C, Curran, SR, Woodhouse, E et al. (2015) Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry, American Medical Association 72, 415. doi: 10.1001/jamapsychiatry.2014.3028.
Coop, G and Pickrell, J (2016) What is genetic correlation? Available at https://joepickrell.wordpress.com/2016/04/19/what-is-genetic-correlation/ (Accessed 19 January 2017).
Cooper, GM, Coe, BP, Girirajan, S, Rosenfeld, JA, Vu, TH, Baker, C et al. (2011) A copy number variation morbidity map of developmental delay. Nature Genetics, Nature Research 43, 838846. doi: 10.1038/ng.909.
Cramer, AOJ, Waldorp, LJ, van der Maas, HLJ and Borsboom, D (2010) Comorbidity: a network perspective. Behavioral and Brain Sciences, Cambridge University Press 33, 137150. doi: 10.1017/S0140525X09991567.
Cross-Disorder Group of the PGC (2013 a) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics 45, 984994.
Cross-Disorder Group of the PGC (2013 b) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 13711379.
Davis, LK, Yu, D, Keenan, CL, Gamazon, ER, Konkashbaev, AI, Derks, EM et al. (2013). Partitioning the heritability of tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genetics, Edited by Keller, M. C.. Public Library of Science 9, e1003864. doi: 10.1371/journal.pgen.1003864.
DeFries, JC and Fulker, DW (1985) Multiple regression analysis of twin data. Behavior Genetics 15, 467473.
Demirkan, A, Penninx, BWJH, Hek, K, Wray, NR, Amin, N, Aulchenko, YS et al. (2011) Genetic risk profiles for depression and anxiety in adult and elderly cohorts. Molecular Psychiatry, Nature Publishing Group 16, 773783. doi: 10.1038/mp.2010.65.
Demontis, D, Walters, RK, Martin, J, Mattheisen, M, Als, TD, Agerbo, E et al. (2017) Discovery of the first genome-wide significant risk loci for ADHD. bioRxiv. doi: 10.1101/145581.
den Braber, A, Zilhão, NR, Fedko, IO, Hottenga, J-J, Pool, R, Smit, DJA et al. (2016) Obsessive–compulsive symptoms in a large population-based twin-family sample are predicted by clinically based polygenic scores and by genome-wide SNPs. Translational Psychiatry, Nature Publishing Group 6, e731. doi: 10.1038/tp.2015.223.
De Rubeis, S, He, X, Goldberg, AP, Poultney, CS, Samocha, K, Ercument Cicek, A et al. (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209215. doi: 10.1038/nature13772.
Direk, N, Williams, S, Smith, JA, Ripke, S, Air, T, Amare, AT et al. (2016) An analysis of two genome-wide association meta-analyses identifies a new locus for broad depression phenotype. Biological Psychiatry, Princeton University Press, Princeton, NJ 110, 96929697. doi: 10.1016/j.biopsych.2016.11.013.
Eley, TC (1997) Depressive symptoms in children and adolescents: etiological links between normality and abnormality: a research note. Journal of Child Psychology and Psychiatry 38, 861865.
Finucane, HK, Bulik-Sullivan, B, Gusev, A, Trynka, G, Reshef, Y, Loh, P-R et al. (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, Nature Research 47, 12281235. doi: 10.1038/ng.3404.
Girirajan, S, Brkanac, Z, Coe, BP, Baker, C, Vives, L, Vu, TH et al. (2011) Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genetics 7, e1002334.
Goldsmith, H and Lemery, KS (2000) Linking temperamental fearfulness and anxiety symptoms: a behavior–genetic perspective. Biological Psychiatry 48, 11991209. doi: 10.1016/S0006-3223(00)01003-9.
Gonzalez-Mantilla, AJ, Moreno-De-Luca, A, Ledbetter, DH and Martin, CL (2016) A cross-disorder method to identify novel candidate genes for developmental brain disorders. JAMA Psychiatry 73, 275283. doi: 10.1001/jamapsychiatry.2015.2692.
Greven, CU, Harlaar, N, Dale, PS and Plomin, R (2011) Genetic overlap between ADHD symptoms and reading is largely driven by inattentiveness rather than hyperactivity-impulsivity. Journal of the Canadian Academy of Child and Adolescent Psychiatry 20, 6.
Greven, CU, Kovas, Y, Willcutt, EG, Petrill, SA and Plomin, R (2014) Evidence for shared genetic risk between ADHD symptoms and reduced mathematics ability: a twin study. Journal of Child Psychology and Psychiatry 55, 3948. doi: 10.1111/jcpp.12090.
Greven, CU, Merwood, A, van der Meer, JMJ, Haworth, CMA, Rommelse, N and Buitelaar, JK (2016) The opposite end of the attention deficit hyperactivity disorder continuum: genetic and environmental aetiologies of extremely low ADHD traits. Journal of Child Psychology and Psychiatry 57, 523531. doi: 10.1111/jcpp.12475.
Groen-Blokhuis, MM, Middeldorp, CM, Kan, K-J, Abdellaoui, A, van Beijsterveldt, CEM, Ehli, EA et al. (2014) Attention deficit hyperactivity disorder polygenic risk scores predict attention problems in a population-based sample of children. Journal of the American Academy of Child & Adolescent Psychiatry 53, 11231129.
Guilmatre, A, Dubourg, C, Mosca, A-LL, Legallic, S, Goldenberg, A, Drouin-Garraud, V et al. (2009) Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Archives of General Psychiatry 66, 947. doi: 10.1001/archgenpsychiatry.2009.80.
Hagenaars, SP, Harris, SE, Davies, G, Hill, WD, Liewald, DCM, Ritchie, SJ et al. (2016) Shared genetic aetiology between cognitive functions and physical and mental health in UK biobank (N = 112 151) and 24 GWAS consortia. Molecular Psychiatry, Nature Publishing Group 21, 16241632. doi: 10.1038/mp.2015.225.
Hallett, V, Ronald, A, Rijsdijk, F and Happé, F (2010) Association of autistic-like and internalizing traits during childhood: a longitudinal twin study. American Journal of Psychiatry, American Psychiatric Association 167, 809817. doi: 10.1176/appi.ajp.2009.09070990.
Hamshere, ML, Stergiakouli, E, Langley, K, Martin, J, Holmans, P, Kent, L et al. (2013) A shared polygenic contribution between childhood ADHD and adult schizophrenia. The British Journal of Psychiatry 203, 107111. doi: 10.1192/bjp.bp.112.117432.
Han, B, Pouget, JG, Slowikowski, K, Stahl, E, Lee, CH, Diogo, D et al. (2016) A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases. Nature Genetics, Nature Research 48, 803810. doi: 10.1038/ng.3572.
Hoekstra, RA, Happé, F, Baron-Cohen, S and Ronald, A (2009) Association between extreme autistic traits and intellectual disability: insights from a general population twin study. The British Journal of Psychiatry 195, 531536.
Hoekstra, RA, Happé, F, Baron-Cohen, S, Ronald, A, Baron-Cohen, S and Ronald, A (2010) Limited genetic covariance between autistic traits and intelligence: findings from a longitudinal twin study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, Wiley Subscription Services, Inc., A Wiley Company 153, 9941007. doi: 10.1002/ajmg.b.31066.
Hubbard, L, Tansey, KE, Rai, D, Jones, P, Ripke, S, Chambert, KD et al. (2016) Evidence of common genetic overlap between schizophrenia and cognition. Schizophrenia Bulletin, Oxford University Press 42, 832842. doi: 10.1093/schbul/sbv168.
Iossifov, I, O'Roak, BJ, Sanders, SJ, Ronemus, M, Krumm, N, Levy, D et al. (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216221. doi: 10.1038/nature13908.
Jansen, PR, Polderman, TJC, Bolhuis, K, van der Ende, J, Jaddoe, VWV, Verhulst, FC et al. (2017) Polygenic scores for schizophrenia and educational attainment are associated with behavioural problems in early childhood in the general population. Journal of Child Psychology and Psychiatry. doi: 10.1111/jcpp.12759.
Jones, HJ, Stergiakouli, E, Tansey, KE, Hubbard, L, Heron, J, Cannon, M et al. (2016) Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry 73, 221228. doi: 10.1001/jamapsychiatry.2015.3058.
Kendall, KM, Rees, E, Escott-Price, V, Einon, M, Thomas, R, Hewitt, J et al. (2016) Cognitive performance among carriers of pathogenic copy number variants: analysis of 152000 UK Biobank subjects. Biological Psychiatry 82, 103110. doi: 10.1016/j.biopsych.2016.08.014.
Kendler, KS, Gardner, CO, Gatz, M and Pedersen, NL (2007) The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample. Psychological Medicine, Cambridge University Press 37, 453. doi: 10.1017/S0033291706009135.
Krapohl, E, Euesden, J, Zabaneh, D, Pingault, J-B, Rimfeld, K, von Stumm, S et al. (2016) Phenome-wide analysis of genome-wide polygenic scores. Molecular Psychiatry, Nature Publishing Group 21, 11881193. doi: 10.1038/mp.2015.126.
Lahey, BB, Applegate, B, Hakes, JK, Zald, DH, Hariri, AR and Rathouz, PJ (2012) Is there a general factor of prevalent psychopathology during adulthood? Journal of Abnormal Psychology, NIH Public Access 121, 971977. doi: 10.1037/a0028355.
Larsson, H, Anckarsater, H, Råstam, M, Chang, Z and Lichtenstein, P (2011) Childhood attention-deficit hyperactivity disorder as an extreme of a continuous trait: a quantitative genetic study of 8500 twin pairs. Journal of Child Psychology and Psychiatry 53, 7380.
Lee, SH, Yang, J, Goddard, ME, Visscher, PM and Wray, NR (2012) Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics, Oxford University Press 28, 25402542. doi: 10.1093/bioinformatics/bts474.
Lencz, T, Knowles, E, Davies, G, Guha, S, Liewald, DC, Starr, JM et al. (2014) Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the cognitive genomics consorTium (COGENT). Molecular Psychiatry, Macmillan Publishers Limited 19, 168174. doi: 10.1038/mp.2013.166.
Levy, F, Hay, DA, McStephen, M, Wood, C and Waldman, I (1997) Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. Journal of the American Academy of Child and Adolescent Psychiatry 36, 737744.
Lichtenstein, P, Carlström, E, Råstam, M, Gillberg, C and Anckarsäter, H (2010) The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. American Journal of Psychiatry 167, 13571363.
Lichtenstein, P, Yip, BH, Björk, C, Pawitan, Y, Cannon, TD, Sullivan, PF et al. (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. The Lancet 373, 234239. doi: 10.1016/S0140-6736(09)60072-6.
Lionel, AC, Crosbie, J, Barbosa, N, Goodale, T, Thiruvahindrapuram, B, Rickaby, J et al. (2011) Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Science Translational Medicine 3, 95ra75.
Lo, M-T, Hinds, DA, Tung, JY, Franz, C, Fan, C-C, Wang, Y et al. (2016) Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, Nature Research 49, 152156. doi: 10.1038/ng.3736.
Logan, JAR, Petrill, SA, Hart, SA, Schatschneider, C, Thompson, LA, Deater-Deckard, K et al. (2012) Heritability across the distribution: an application of quantile regression. Behavior Genetics, NIH Public Access 42, 256267. doi: 10.1007/s10519-011-9497-7.
López-Solà, C, Fontenelle, LF, Bui, M, Hopper, JL, Pantelis, C, Yücel, M et al. (2016) Aetiological overlap between obsessive-compulsive related and anxiety disorder symptoms: multivariate twin study. The British Journal of Psychiatry 208, 2633.
Lundström, S, Chang, Z, Kerekes, N, Gumpert, CH, Råstam, M, Gillberg, C et al. (2011) Autistic-like traits and their association with mental health problems in two nationwide twin cohorts of children and adults. Psychological Medicine, Cambridge University Press 41, 24232433. doi: 10.1017/S0033291711000377.
Lundström, S, Chang, Z, Råstam, M, Gillberg, C, Larsson, H, Anckarsäter, H et al. (2012) Autism spectrum disorders and autisticlike traits: similar etiology in the extreme end and the normal variation. Archives of General Psychiatry, American Medical Association 69, 4652. doi: 10.1001/archgenpsychiatry.2011.144.
Maier, R, Moser, G, Chen, G-B, Ripke, S, Cross-Disorder Working Group of the Psychiatric Genomics Consortium, Coryell, W et al. (2015). Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. American Journal of Human Genetics, Elsevier 96, 283294. doi: 10.1016/j.ajhg.2014.12.006.
Major Depressive Disorder Working Group of the PGC, Wray, NR and Sullivan, PF (2017). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. bioRxiv, Cold Spring Harbor Laboratory. doi: 10.1101/167577.
Männik, K, Mägi, R, Macé, A, Cole, B, Guyatt, AL, Shihab, HA et al. (2015) Copy number variations and cognitive phenotypes in unselected populations. JAMA, American Medical Association 313, 2044. doi: 10.1001/jama.2015.4845.
Martin, J, Hamshere, ML, Stergiakouli, E, O'Donovan, MC and Thapar, A (2014 a) Genetic risk for attention-deficit/hyperactivity disorder contributes to neurodevelopmental traits in the general population. Biological Psychiatry 76, 664671. doi: 10.1016/j.biopsych.2014.02.013.
Martin, J, Hamshere, ML, Stergiakouli, E, O'Donovan, MC and Thapar, A (2014 b) Neurocognitive abilities in the general population and composite genetic risk scores for attention-deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry 56, 648656. doi: 10.1111/jcpp.12336.
McIntosh, A, Gow, A and Luciano, M (2013) Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biological Psychiatry, Elsevier 73, 938943. doi: 10.1016/j.biopsych.2013.01.011.
Meier, SM, Agerbo, E, Maier, R, Pedersen, CB, Lang, M, Grove, J et al. (2016) High loading of polygenic risk in cases with chronic schizophrenia. Molecular Psychiatry, Nature Publishing Group 21, 969974. doi: 10.1038/mp.2015.130.
Michelini, G, Eley, TC, Gregory, AM and McAdams, TA (2015) Aetiological overlap between anxiety and attention deficit hyperactivity symptom dimensions in adolescence. Journal of Child Psychology and Psychiatry 56, 423431. doi: 10.1111/jcpp.12318.
Middeldorp, CM, Hammerschlag, AR, Ouwens, KG, Groen-Blokhuis, MM, St. Pourcain, B, Greven, CU et al. (2016) A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based paediatric cohorts. Journal of the American Academy of Child & Adolescent Psychiatry 55, 896905. doi: 10.1016/j.jaac.2016.05.025.
Mosing, MA, Gordon, SD, Medland, SE, Statham, DJ, Nelson, EC, Heath, AC et al. (2009) Genetic and environmental influences on the co-morbidity between depression, panic disorder, agoraphobia, and social phobia: a twin study. Depression and Anxiety, Wiley Subscription Services, Inc., A Wiley Company 26, 10041011. doi: 10.1002/da.20611.
Neumann, A, Pappa, I, Lahey, BB, Verhulst, FC, Medina-Gomez, C, Jaddoe, VW et al. (2016). Single nucleotide polymorphism heritability of a general psychopathology factor in children. Journal of the American Academy of Child & Adolescent Psychiatry 55, 10381045. e4. doi: 10.1016/j.jaac.2016.09.498.
Nivard, MG, Gage, SH, Hottenga, JJ, van Beijsterveldt, CEM, Abdellaoui, A, Bartels, M et al. (2017) Genetic overlap between schizophrenia and developmental psychopathology: longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophrenia Bulletin, American Psychiatric Association, Washington, DC 183, 11491158. doi: 10.1093/schbul/sbx031.
Nordsletten, AE, Larsson, H, Crowley, JJ, Almqvist, C, Lichtenstein, P and Mataix-Cols, D (2016) Patterns of nonrandom mating within and across 11 major psychiatric disorders. JAMA Psychiatry, American Medical Association 73, 354. doi: 10.1001/jamapsychiatry.2015.3192.
Otowa, T, Hek, K, Lee, M, Byrne, EM, Mirza, SS, Nivard, MG et al. (2016) Meta-analysis of genome-wide association studies of anxiety disorders. Molecular Psychiatry, Nature Publishing Group 21, 13911399. doi: 10.1038/mp.2015.197.
Pain, O, Dudbridge, F and Ronald, A (2017) Are your covariates under control? How normalization can re-introduce covariate effects. bioRxiv.
Pescosolido, M and Gamsiz, E (2013) Distribution of disease-associated copy number variants across distinct disorders of cognitive development. Journal of the American Academy of Child & Adolescent Psychiatry, Elsevier 52, 414430, e14.
Pettersson, E, Anckarsäter, H, Gillberg, C and Lichtenstein, P (2013) Different neurodevelopmental symptoms have a common genetic etiology. Journal of Child Psychology and Psychiatry, and Allied Disciplines 54, 13561365. doi: 10.1111/jcpp.12113.
Pettersson, E, Larsson, H and Lichtenstein, P (2015) Common psychiatric disorders share the same genetic origin: a multivariate sibling study of the Swedish population. Molecular Psychiatry, Macmillan Publishers Limited 21, 717721. doi: 10.1038/mp.2015.116.
Pickrell, JK, Berisa, T, Liu, JZ, Ségurel, L, Tung, JY and Hinds, DA (2016) Detection and interpretation of shared genetic influences on 42 human traits. Nature Genetics, Nature Research 48, 709717. doi: 10.1038/ng.3570.
Pinto, D, Pagnamenta, AT, Klei, L, Anney, R, Merico, D, Regan, R et al. (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature, Nature Publishing Group 466, 368372. doi: 10.1038/nature09146.
Pinto, R, Monzani, B, Leckman, JF, Rück, C, Serlachius, E, Lichtenstein, P et al. (2016) Understanding the covariation of tics, attention-deficit/hyperactivity, and obsessive-compulsive symptoms: a population-based adult twin study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 171, 938947. doi: 10.1002/ajmg.b.32436.
Plomin, R, Haworth, CMA and Davis, OSP (2009) Common disorders are quantitative traits. Nature Reviews Genetics, Nature Publishing Group 10, 872878. doi: 10.1038/nrg2670.
Polderman, TJC, Benyamin, B, de Leeuw, CA, Sullivan, PF, van Bochoven, A, Visscher, PM et al. (2015) Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, Nature Research 47, 702709. doi: 10.1038/ng.3285.
Reichenberg, A, Cederlöf, M, McMillan, A, Trzaskowski, M, Kapara, O, Fruchter, E et al. (2016) Discontinuity in the genetic and environmental causes of the intellectual disability spectrum. Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences 113, 10981103. doi: 10.1073/pnas.1508093112.
Reiersen, AM, Constantino, JN, Grimmer, M, Martin, NG and Todd, RD (2008) Evidence for shared genetic influences on self-reported ADHD and autistic symptoms in young adult Australian twins. Twin Research and Human Genetics 11, 579585.
Rende, RD, Plomin, R, Reiss, D and Hetherington, EM (1993) Genetic and environmental influences on depressive symptomatology in adolescence: individual differences and extreme scores. Journal of Child Psychology and Psychiatry 34, 13871398.
Riglin, L, Collishaw, S, Richards, A, Thapar, AK, Maughan, B, O'Donovan, MC et al. (2017) Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. The Lancet Psychiatry 4, 5762. doi: 10.1016/S2215-0366(16)30406-0.
Riglin, L, Collishaw, S, Thapar, AK, Dalsgaard, S, Langley, K, Smith, GD et al. (2016) Association of genetic risk variants with attention-deficit/hyperactivity disorder trajectories in the general population. JAMA Psychiatry, Muthén & Muthén, Los Angeles, CA 73, 12851292. doi: 10.1001/jamapsychiatry.2016.2817.
Robinson, EB, Koenen, KC, McCormick, MC, Munir, K, Hallett, V, Happé, F et al. (2011) Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Archives of General Psychiatry, American Medical Association 68, 11131121. doi: 10.1001/archgenpsychiatry.2011.119.
Robinson, EB, Neale, BM and Hyman, SE (2015) Genetic research in autism spectrum disorders. Current Opinion in Pediatrics, Wolters Kluwer Health 27, 685691. doi: 10.1097/MOP.0000000000000278.
Robinson, EB, St Pourcain, B, Anttila, V, Kosmicki, JA, Bulik-Sullivan, B, Grove, J et al. (2016) Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics 48, 552555. doi: 10.1038/ng.3529.
Ronald, A, Larsson, H, Anckarsäter, H and Lichtenstein, P (2014 a) Symptoms of autism and ADHD: a Swedish twin study examining their overlap. Journal of Abnormal Psychology 123, 440451. doi: 10.1037/a0036088.
Ronald, A, Sieradzka, D, Cardno, AG, Haworth, CMA, McGuire, P and Freeman, D (2014 b) Characterization of psychotic experiences in adolescence using the specific psychotic experiences questionnaire: findings from a study of 5000 16-year-old twins. Schizophrenia Bulletin, Oxford University Press 40, 868877. doi: 10.1093/schbul/sbt106.
Ronald, A, Simonoff, E, Kuntsi, J, Asherson, P and Plomin, R (2008) Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. Journal of Child Psychology and Psychiatry, Wiley Online Library 49, 535542.
Roy, M-A, Neale, MC, Pedersen, NL, Mathé, AA and Kendler, KS (1995) A twin study of generalized anxiety disorder and major depression. Psychological Medicine, Cambridge University Press 25, 1037. doi: 10.1017/S0033291700037533.
Rydell, M, Taylor, MJ and Larsson, H (2017) Genetic and environmental contributions to the association between ADHD and affective problems in early childhood-A Swedish population-based twin study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 174, 538546. doi: 10.1002/ajmg.b.32536.
Samocha, KE, Robinson, EB, Sanders, SJ, Stevens, C, Sabo, A, McGrath, LM et al. (2014) A framework for the interpretation of de novo mutation in human disease. Nature Genetics, Nature Research 46, 944950. doi: 10.1038/ng.3050.
Sanders, SJ, Ercan-Sencicek, AG, Hus, V, Luo, R, Murtha, MT, Moreno-De-Luca, D et al. (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11. 23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863885. doi: 10.1016/j.neuron.2011.05.002.
Sebat, J, Levy, DL and McCarthy, SE (2009) Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends in Genetics 25, 528535. doi: 10.1016/j.tig.2009.10.004.
Shakeshaft, NG, Trzaskowski, M, McMillan, A, Krapohl, E, Simpson, MA, Reichenberg, A et al. (2015) Thinking positively: the genetics of high intelligence. Intelligence 48, 123132. doi: 10.1016/j.intell.2014.11.005.
Sieradzka, D, Power, RA, Freeman, D, Cardno, AG, McGuire, P, Plomin, R et al. (2014) Are genetic risk factors for psychosis also associated with dimension-specific psychotic experiences in adolescence? PLoS ONE, Edited by Potash, J. B., Public Library of Science 9, e94398. doi: 10.1371/journal.pone.0094398.
Slane, JD, Burt, SA and Klump, KL (2011) Genetic and environmental influences on disordered eating and depressive symptoms. International Journal of Eating Disorders, Wiley Subscription Services, Inc., A Wiley Company 44, 605611. doi: 10.1002/eat.20867.
Sniekers, S, Stringer, S, Watanabe, K, Jansen, PR, Coleman, JRI, Krapohl, E et al. (2017) Genome-wide association meta-analysis of 78308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics 49, 11071112. doi: 10.1038/ng.3869.
Song, J, Bergen, SE, Kuja-Halkola, R, Larsson, H, Landén, M and Lichtenstein, P (2015) Bipolar disorder and its relation to major psychiatric disorders: a family-based study in the Swedish population. Bipolar Disorders 17, 184193. doi: 10.1111/bdi.12242.
Spinath, FM, Harlaar, N, Ronald, A and Plomin, R (2004) Substantial genetic influence on mild mental impairment in early childhood. American Journal on Mental Retardation 109, 34. doi: 10.1352/0895-8017.
Stergiakouli, E, Davey Smith, G, Martin, J, Skuse, DH, Viechtbauer, W, Ring, SM et al. (2017) Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development. Molecular Autism, BioMed Central 8. doi: 10.1186/s13229-017-0131-2.
Stergiakouli, E, Martin, J, Hamshere, ML, Heron, J, St Pourcain, B, Timpson, NJN et al. (2016) Association between polygenic risk scores for attention-deficit hyperactivity disorder and educational and cognitive outcomes in the general population. International Journal of Epidemiology 46, 421428. doi: 10.1093/ije/dyw216.
Stergiakouli, E, Martin, J, Hamshere, ML, Langley, K, Evans, DM, St Pourcain, B et al. (2015) Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) traits in children and clinical ADHD. Journal of the American Academy of Child & Adolescent Psychiatry, Elsevier 54, 322327. doi: 10.1016/j.jaac.2015.01.010.
Stevenson, J, Batten, N and Cherner, M (1992) Fears and fearfulness in children and adolescents: a genetic analysis of twin data. Journal of Child Psychology and Psychiatry, Blackwell Publishing Ltd 33, 977985. doi: 10.1111/j.1469-7610.1992.tb00919.x.
St Pourcain, B, Robinson, EBB, Anttila, V, Bulik Sullivan, B, Maller, J, Golding, J et al. (2017) ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social-communication difficulties. Molecular Psychiatry, Nature Publishing Group. doi: 10.1038/mp.2016.198.
Sullivan, PF, Daly, MJ and O'Donovan, M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Reviews. Genetics 13, 537551. doi: 10.1038/nrg3240.
Taylor, MJ, Charman, T, Robinson, EB, Plomin, R, Happé, F, Asherson, P et al. (2012) Developmental associations between traits of autism spectrum disorder and attention deficit hyperactivity disorder: a genetically informative, longitudinal twin study. Psychological Medicine 43, 17351746.
Thapar, A, Cooper, M and Rutter, M (2017) Neurodevelopmental disorders. The Lancet Psychiatry 4, 339346.
Thapar, A and McGuffin, P (1997) Anxiety and depressive symptoms in childhood – a genetic study of comorbidity. Journal of Child Psychology and Psychiatry 38, 651656.
The ASD Working Group of The PGC (2017) Meta-analysis of GWAS of over 16000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Molecular Autism 8, 21. doi: 10.1186/s13229-017-0137-9.
The Deciphering Developmental Disorders Study (2014) Large-scale discovery of novel genetic causes of developmental disorders. Nature, Nature Research 519, 223228. doi: 10.1038/nature14135.
The International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, Nature Publishing Group 455, 237241.
The International Schizophrenia Consortium (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748752. doi: 10.1038/nature08185.
van Grootheest, DS, Cath, DC, Beekman, AT and Boomsma, DI (2005) Twin studies on obsessive-compulsive disorder: a review. Twin Research and Human Genetics, Cambridge University Press 8, 450458. doi: 10.1375/twin.8.5.450.
van Hulzen, KJE, Scholz, CJ, Franke, B, Ripke, S, Klein, M, McQuillin, A et al. (2016). Genetic overlap between attention-deficit/hyperactivity disorder and bipolar disorder: evidence from genome-wide association study meta-analysis. Biological Psychiatry, Elsevier 82, 634641. doi: 10.1016/j.biopsych.2016.08.040.
Wadsworth, SJ, DeFries, JC, Willcutt, EG, Pennington, BF and Olson, RK (2015) The Colorado longitudinal twin study of reading difficulties and ADHD: etiologies of comorbidity and stability. Twin Research and Human Genetics, Cambridge University Press 18, 755761. doi: 10.1017/thg.2015.66.
Weiner, DJ, Wigdor, EM, Ripke, S, Walters, RK, Kosmicki, JA, Grove, J et al. (2017). Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nature Genetics 49, 978985. doi: 10.1038/ng.3863.
Whiteford, HA, Degenhardt, L, Rehm, J, Baxter, AJ, Ferrari, AJ, Erskine, HE et al. (2013) Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. The Lancet 382, 15751586. doi: 10.1016/S0140-6736(13)61611-6.
Williams, NM, Franke, B, Mick, E, Anney, RJL, Freitag, CM, Gill, M et al. (2012) Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13. 3. American Journal of Psychiatry, Am Psychiatric Assoc 169, 195204.
Williams, NM, Zaharieva, I, Martin, A, Langley, K, Mantripragada, K, Fossdal, R et al. (2010) Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 376, 14011408.
Wray, NR, Lee, SH and Kendler, KS (2012) Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes. European Journal of Human Genetics, Nature Publishing Group 20, 668674. doi: 10.1038/ejhg.2011.257.
Wray, NR, Lee, SH, Mehta, D, Vinkhuyzen, AAE, Dudbridge, F and Middeldorp, CM (2014) Research review: polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry 55, 10681087. doi: 10.1111/jcpp.12295.
Yang, J, Lee, SH, Goddard, ME and Visscher, PM (2011) GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics 88, 7682. doi: 10.1016/j.ajhg.2010.11.011.
Yang, J, Zeng, J, Goddard, ME, Wray, NR and Visscher, PM (2017) Concepts, estimation and interpretation of SNP-based heritability. Nature Genetics 49, 13041310. doi: 10.1038/ng.3941.
Zammit, S, Hamshere, M, Dwyer, S, Georgiva, L, Timpson, N, Moskvina, V et al. (2013) A population-based study of genetic variation and psychotic experiences in adolescents. Schizophrenia Bulletin, Oxford University Press 40, 12541262. doi: 10.1093/schbul/sbt146.
Zavos, HMS, Eley, TC, McGuire, P, Plomin, R, Cardno, AG, Freeman, D et al. (2016) Shared etiology of psychotic experiences and depressive symptoms in adolescence: a longitudinal twin study. Schizophrenia Bulletin, Oxford University Press 42, 11971206. doi: 10.1093/schbul/sbw021.
Zavos, HMS, Freeman, D, Haworth, CMA, McGuire, P, Plomin, R, Cardno, AG et al. (2014) Consistent etiology of severe, frequent psychotic experiences and milder, less frequent manifestations. JAMA Psychiatry, American Medical Association 71, 1049. doi: 10.1001/jamapsychiatry.2014.994.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Psychological Medicine
  • ISSN: 0033-2917
  • EISSN: 1469-8978
  • URL: /core/journals/psychological-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed