Skip to main content Accessibility help

Alexithymia and frontal–amygdala functional connectivity in North Korean refugees

  • Nambeom Kim (a1), Inkyung Park (a2), Yu Jin Lee (a2), Sehyun Jeon (a3), Soohyun Kim (a4), Kyung Hwa Lee (a2), Juhyun Park (a5), Hang-Keun Kim (a6), Ah Reum Gwaq (a7), Jin Yong Jun (a8), So Young Yoo (a9), So Hee Lee (a9) and Seog Ju Kim (a3)...



Refugees commonly experience difficulties with emotional processing, such as alexithymia, due to stressful or traumatic experiences. However, the functional connectivity of the amygdala, which is central to emotional processing, has yet to be assessed in refugees. Thus, the present study investigated the resting-state functional connectivity of the amygdala and its association with emotional processing in North Korean (NK) refugees.


This study included 45 NK refugees and 40 native South Koreans (SK). All participants were administered the Toronto Alexithymia Scale (TAS), Beck Depression Inventory (BDI), and Clinician-administered PTSD Scale (CAPS), and differences between NK refugees and native SK in terms of resting-state functional connectivity of the amygdala were assessed. Additionally, the association between the strength of amygdala connectivity and the TAS score was examined.


Resting-state connectivity values from the left amygdala to the bilateral dorsolateral prefrontal cortex (dlPFC) and dorsal anterior cingulate cortex (dACC) were higher in NK refugees than in native SK. Additionally, the strength of connectivity between the left amygdala and right dlPFC was positively associated with TAS score after controlling for the number of traumatic experiences and BDI and CAPS scores.


The present study found that NK refugees exhibited heightened frontal–amygdala connectivity, and that this connectivity was correlated with alexithymia. The present results suggest that increased frontal–amygdala connectivity in refugees may represent frontal down-regulation of the amygdala, which in turn may produce alexithymia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Alexithymia and frontal–amygdala functional connectivity in North Korean refugees
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Alexithymia and frontal–amygdala functional connectivity in North Korean refugees
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Alexithymia and frontal–amygdala functional connectivity in North Korean refugees
      Available formats


Corresponding author

Author for correspondence: Seog Ju Kim, E-mail:


Hide All

Both Authors contributed equally to this work



Hide All
Banks, SJ, Eddy, KT, Angstadt, M, Nathan, PJ and Phan, KL (2007) Amygdala–frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience 2, 303312.
Bantick, SJ, Wise, RG, Ploghaus, A, Clare, S, Smith, SM and Tracey, I (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310319.
Barrett, LF (2006) Solving the emotion paradox: categorization and the experience of emotion. Personality and Social Psychology Review 10, 2046.
Barrett, LF (2017) The theory of constructed emotion: an active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience 12, 1833.
Beck, AT, Steer, RA and Brown, GK (1996) Beck depression inventory-II. San Antonio 78, 490498.
Behzadi, Y, Restom, K, Liau, J and Liu, TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90101.
Blake, DD, Weathers, FW, Nagy, LM, Kaloupek, DG, Gusman, FD, Charney, DS and Keane, TM (1995) The development of a clinician-administered PTSD scale. Journal of Traumatic Stress 8, 7590.
Boccia, M, D'Amico, S, Bianchini, F, Marano, A, Giannini, AM and Piccardi, L (2016) Different neural modifications underpin PTSD after different traumatic events: an fMRI meta-analytic study. Brain Imaging and Behavior 10, 226237.
Brown, VM, LaBar, KS, Haswell, CC, Gold, AL, Workgroup, M-AM, Beall, SK, Van Voorhees, E, Marx, CE, Calhoun, PS and Fairbank, JA (2014) Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology 39, 361.
Davis, M (1992) The role of the amygdala in fear and anxiety. Annual Review of Neuroscience 15, 353375.
Delgado, MR, Jou, RL, Ledoux, JE and Phelps, EA (2009) Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Frontiers in Behavioral Neuroscience 3, 33.
Etkin, A, Büchel, C and Gross, JJ (2015) The neural bases of emotion regulation. Nature Reviews Neuroscience 16, 693.
First, MB, Gibbon, M, Spitzer, RL and Benjamin, LS (1997) User's Guide for the Structured Clinical Interview for DSM-IV Axis II Personality Disorders: SCID-II. Arlington: American Psychiatric Pub.
Goerlich-Dobre, KS, Bruce, L, Martens, S, Aleman, A and Hooker, CI (2014a) Distinct associations of insula and cingulate volume with the cognitive and affective dimensions of alexithymia. Neuropsychologia 53, 284292.
Goerlich-Dobre, KS, Witteman, J, Schiller, NO, van Heuven, VJP, Aleman, A and Martens, S (2014b) Blunted feelings: alexithymia is associated with a diminished neural response to speech prosody. Social Cognitive and Affective Neuroscience 9, 11081117.
Goerlich-Dobre, KS, Lamm, C, Pripfl, J, Habel, U and Votinov, M (2015) The left amygdala: a shared substrate of alexithymia and empathy. NeuroImage 122, 2032.
Goldin, PR, McRae, K, Ramel, W and Gross, JJ (2008) The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry 63, 577586.
Herringa, RJ, Birn, RM, Ruttle, PL, Burghy, CA, Stodola, DE, Davidson, RJ and Essex, MJ (2013) Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proceedings of the National Academy of Sciences 110, 1911919124.
Ho, NS, Wong, MM and Lee, TM (2016) Neural connectivity of alexithymia: specific association with major depressive disorder. Journal of Affective Disorder 15, 362372.
Imperatori, C, Della Marca, G, Brunetti, R, Carbone, GA, Massullo, C, Valenti, EM, Amoroso, N, Maestoso, G, Contardi, A and Farina, B (2016) Default Mode Network alterations in alexithymia: an EEG power spectra and connectivity study. Scientific Reports 6, 36653.
Jedd, K, Hunt, RH, Cicchetti, D, Hunt, E, Cowell, RA, Rogosch, FA, Toth, SL and Thomas, KM (2015) Long-term consequences of childhood maltreatment: altered amygdala functional connectivity. Development and Psychopathology 27, 15771589.
Jeon, W, Hong, C, Lee, C, Kim, DK, Han, M and Min, S (2005) Correlation between traumatic events and posttraumatic stress disorder among North Korean defectors in South Korea. Journal of Traumatic Stress 18, 147154.
Kashdan, TB, Barrios, V, Forsyth, JP and Steger, MF (2006) Experiential avoidance as a generalized psychological vulnerability: comparisons with coping and emotion regulation strategies. Behaviour Research and Therapy 44, 13011320.
Keyes, EF (2000) Mental health status in refugees: an integrative review of current research. Issues in Mental Health Nursing 21, 397410.
Lee, YJ, Yu, SH, Cho, SJ, Cho, IH, Koh, SH and Kim, SJ (2010) Direct and indirect effects of the temperament and character on alexithymia: a pathway analysis with mood and anxiety. Comprehensive Psychiatry 51, 201206.
Lee, Y, Lee, M and Park, S (2017) Mental health status of North Korean refugees in South Korea and risk and protective factors: a 10-year review of the literature. European Journal of Psychotraumatology 8, 1369833.
Liemburg, EJ, Swart, M, Bruggeman, R, Kortekaas, R, Knegtering, H, Ćurčić-Blake, B and Aleman, A (2012) Altered resting state connectivity of the default mode network in alexithymia. Social Cognitive and Affective Neuroscience 7, 660666.
Marshall, GN, Schell, TL, Elliott, MN, Berthold, SM and Chun, C-A (2005) Mental health of Cambodian refugees 2 decades after resettlement in the United States. JAMA 294, 571579.
Moriguchi, Y and Komaki, G (2013) Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial Medicine 7, 8.
Moriguchi, Y, Ohnishi, T, Lane, RD, Maeda, M, Mori, T, Nemoto, K and Komaki, G (2006) Impaired self-awareness and theory of mind: an fMRI study of mentalizing in alexithymia. NeuroImage 32, 14721482.
Nicholson, AA, Densmore, M, Frewen, PA, Théberge, J, Neufeld, RW, McKinnon, MC and Lanius, RA (2015) The dissociative subtype of posttraumatic stress disorder: unique resting-state functional connectivity of basolateral and centromedial amygdala complexes. Neuropsychopharmacology 40, 2317.
Ochsner, KN, Silvers, JA and Buhle, JT (2012) Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences 1251, E124.
Park, J, Jun, JY, Lee, YJ, Kim, S, Lee, S-H, Yoo, SY and Kim, SJ (2015) The association between alexithymia and posttraumatic stress symptoms following multiple exposures to traumatic events in North Korean refugees. Journal of Psychosomatic Research 78, 7781.
Phelps, EA, O'Connor, KJ, Gatenby, JC, Gore, JC, Grillon, C and Davis, M (2001) Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience 4, 437.
Pollatos, O and Gramann, K (2012) Attenuated modulation of brain activity accompanies emotion regulation deficits in alexithymia. Psychophysiology 49, 651658.
Smith, SM, Jenkinson, M, Woolrich, MW, Beckmann, CF, Behrens, TE, Johansen-Berg, H, Bannister, PR, De Luca, M, Drobnjak, I and Flitney, DE (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208S219.
Söndergaard, HP and Theorell, T (2004) Alexithymia, emotions and PTSD; findings from a longitudinal study of refugees. Nordic Journal of Psychiatry 58, 185191.
Sutherland, MT, Carroll, AJ, Salmeron, BJ, Ross, TJ and Stein, EA (2013) Insula's functional connectivity with ventromedial prefrontal cortex mediates the impact of trait alexithymia on state tobacco craving. Psychopharmacology 228, 143155.
Swart, M, Kortekaas, R and Aleman, A (2009) Dealing with feelings: characterization of trait alexithymia on emotion regulation strategies and cognitive-emotional processing. PLoS One 4, e5751.
Taylor, GJ, Bagby, M and Parker, JD (1992) The revised Toronto Alexithymia Scale: some reliability, validity, and normative data. Psychotherapy and Psychosomatics 57, 3441.
Taylor, GJ, Bagby, RM and Parker, JD (1999) Disorders of Affect Regulation: Alexithymia in Medical and Psychiatric Illness. Cambridge: Cambridge University Press.
van der Velde, J, Gromann, PM, Swart, M, Wiersma, D, de Haan, L, Bruggeman, R, Krabbendam, L and Aleman, A (2015) Alexithymia influences brain activation during emotion perception but not regulation. Social Cognitive and Affective Neuroscience 10, 285–193.
van Veen, V and Carter, CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology and Behavior 77, 477482.
Vuilleumier, P (2005) How brains beware: neural mechanisms of emotional attention. Trends in Cognitive Sciences 9, 585594.
Walker, S, O'Connor, DB and Schaefer, A (2011) Brain potentials to emotional pictures are modulated by alexithymia during emotion regulation. Cognitive, Affective, & Behavioral Neuroscience 11, 463475.
Whitfield-Gabrieli, S and Nieto-Castanon, A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2, 125141.


Type Description Title
Supplementary materials

Kim et al. supplementary material
Kim et al. supplementary material 1

 Unknown (4.7 MB)
4.7 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed