Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T15:33:09.393Z Has data issue: false hasContentIssue false

Posterior cingulate and medial prefrontal excitation-inhibition balance in euthymic bipolar disorder

Published online by Cambridge University Press:  03 June 2024

Huai-Hsuan Tseng
Affiliation:
Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
Cheng Ying Wu
Affiliation:
Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
Hui Hua Chang
Affiliation:
Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
Tsung-Hua Lu
Affiliation:
Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
Wei Hung Chang
Affiliation:
Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
Chia-Fen Hsu
Affiliation:
Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
Ren-Yi Lin
Affiliation:
Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan Department of Psychology, National Cheng Kung University, Tainan, Taiwan
Ding-Ruey Yeh
Affiliation:
Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan, Taiwan
Fu-Zen Shaw
Affiliation:
Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan Department of Psychology, National Cheng Kung University, Tainan, Taiwan
Yen Kuang Yang
Affiliation:
Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
Po See Chen*
Affiliation:
Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
*
Corresponding author: Po See Chen; Email: chenps@mail.ncku.edu.tw

Abstract

Background

Persistent cognitive deficits and functional impairments are associated with bipolar disorder (BD), even during the euthymic phase. The dysfunction of default mode network (DMN) is critical for self-referential and emotional mental processes and is implicated in BD. The current study aims to explore the balance of excitatory and inhibitory neurotransmitters, i.e. glutamate and γ-aminobutyric acid (GABA), in hubs of the DMN during the euthymic patients with BD (euBD).

Method

Thirty-four euBD and 55 healthy controls (HC) were recruited to the study. Using proton magnetic resonance spectroscopy (1H-MRS), glutamate (with PRESS sequence) and GABA levels (with MEGAPRESS sequence) were measured in the medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC) and the posterior cingulate gyrus (PCC). Measured concentrations of excitatory glutamate/glutamine (Glx) and inhibitory GABA were used to calculate the excitatory/inhibitory (E/I) ratio. Executive and attentional functions were respectively assessed using the Wisconsin card-sorting test and continuous performance test.

Results

euBD performed worse on attentional function than controls (p = 0.001). Compared to controls, euBD had higher E/I ratios in the PCC (p = 0.023), mainly driven by a higher Glx level in the PCC of euBD (p = 0.002). Only in the BD group, a marginally significant negative association between the mPFC E/I ratio (Glx/GABA) and executive function was observed (p = 0.068).

Conclusions

Disturbed E/I balance, particularly elevated Glx/GABA ratio in PCC is observed in euBD. The E/I balance in hubs of DMN may serve as potential biomarkers for euBD, which may also contribute to their poorer executive function.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bora, E., Fornito, A., Pantelis, C., & Yucel, M. (2012). Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138, 918.CrossRefGoogle ScholarPubMed
Bora, E., Vahip, S., Gonul, A. S., Akdeniz, F., Alkan, M., Ogut, M., & Eryavuz, A. (2005). Evidence for theory of mind deficits in euthymic patients with bipolar disorder. Acta Psychiatrica Scandinavica, 112, 110116.CrossRefGoogle ScholarPubMed
Brady, R. O. Jr., McCarthy, J. M., Prescot, A. P., Jensen, J. E., Cooper, A. J., Cohen, B. M., … Ongür, D. (2013). Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disorders, 15, 434439.CrossRefGoogle ScholarPubMed
Brambilla, P., Perez, J., Barale, F., Schettini, G., & Soares, J. C. (2003). GABAergic dysfunction in mood disorders. Molecular Psychiatry, 8, 721737, 715.CrossRefGoogle ScholarPubMed
Chang, L., Jiang, C. S., & Ernst, T. (2009). Effects of age and sex on brain glutamate and other metabolites. Magnetic Resonance Imaging, 27, 142145.CrossRefGoogle ScholarPubMed
Chen, W. J., Hsiao, C. K., Hsiao, L. L., & Hwu, H. G. (1998). Performance of the continuous performance test among community samples. Schizophrenia Bulletin, 24, 163174.CrossRefGoogle ScholarPubMed
Dager, S. R., Corrigan, N. M., Richards, T. L., & Posse, S. (2008). Research applications of magnetic resonance spectroscopy to investigate psychiatric disorders. Topics in Magnetic Resonance Imaging, 19, 8196.CrossRefGoogle ScholarPubMed
de Jonge, J. C., Vinkers, C. H., Hulshoff Pol, H. E., & Marsman, A. (2017). GABAergic mechanisms in schizophrenia: Linking postmortem and in vivo studies. Frontiers in Psychiatry, 8, 118.CrossRefGoogle ScholarPubMed
Duarte, J. M. N., & Xin, L. (2019). Magnetic resonance spectroscopy in schizophrenia: Evidence for glutamatergic dysfunction and impaired energy metabolism. Neurochemical Research, 44, 102116.CrossRefGoogle ScholarPubMed
Ferguson, B. R., & Gao, W. J. (2018). Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biological Psychiatry, 83, 657669.CrossRefGoogle ScholarPubMed
Gao, F., Edden, R. A., Li, M., Puts, N. A., Wang, G., Liu, C., … Barker, P. B. (2013). Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage, 78, 7582.CrossRefGoogle ScholarPubMed
Gigante, A. D., Bond, D. J., Lafer, B., Lam, R. W., Young, L. T., & Yatham, L. N. (2012). Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: A meta-analysis. Bipolar Disorders, 14, 478487.CrossRefGoogle ScholarPubMed
Gillissie, E. S., Lui, L. M. W., Ceban, F., Miskowiak, K., Gok, S., Cao, B., … McIntyre, R. S. (2022). Deficits of social cognition in bipolar disorder: Systematic review and meta-analysis. Bipolar Disorders, 24, 137148.CrossRefGoogle ScholarPubMed
Hsieh, P. C., Chu, C. L., Yang, Y. K., Yang, Y. C., Yeh, T. L., Lee, I. H., & Chen, P. S. (2005). Norms of performance of sustained attention among a community sample: Continuous Performance Test study. Psychiatry and Clinical Neurosciences, 59, 170176.CrossRefGoogle ScholarPubMed
Hu, Y., Chen, X., Gu, H., & Yang, Y. (2013). Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. Journal of Neuroscience, 33, 1856618573.CrossRefGoogle ScholarPubMed
Ino, H., Honda, S., Yamada, K., Horita, N., Tsugawa, S., Yoshida, K., … Moriguchi, S. (2023). Glutamatergic neurometabolite levels in bipolar disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 8, 140150.CrossRefGoogle ScholarPubMed
Ishida, T., Nakamura, Y., Tanaka, S. C., Mitsuyama, Y., Yokoyama, S., Shinzato, H., … Koike, S. (2023). Aberrant large-scale network interactions across psychiatric disorders revealed by large-sample multi-site resting-state functional magnetic resonance imaging datasets. Schizophrenia Bulletin, 49, 933943.CrossRefGoogle ScholarPubMed
Kapogiannis, D., Reiter, D. A., Willette, A. A., & Mattson, M. P. (2013). Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage, 64, 112119.CrossRefGoogle ScholarPubMed
Kegeles, L. S., Mao, X., Stanford, A. D., Girgis, R., Ojeil, N., Xu, X., … Shungu, D. C. (2012). Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Archives of General Psychiatry, 69, 449459.Google ScholarPubMed
Lee, C. N., Huang, Y. L., Chang, H. H., Kuo, C. Y., Lu, T. H., Hsieh, Y. T., … Tseng, H. H. (2022). Associations of emotion recognition, loneliness, and social functioning in euthymic patients with bipolar disorder. Kaohsiung Journal of Medical Sciences, 38, 703711.CrossRefGoogle ScholarPubMed
Liang, Y., Jiang, X., Zhu, W., Shen, Y., Xue, F., Li, Y., & Chen, Z. (2020). Disturbances of dynamic function in patients with bipolar disorder I and its relationship with executive-function deficit. Frontiers in Psychiatry, 11, 537981.CrossRefGoogle ScholarPubMed
Lindner, M., Bell, T., Iqbal, S., Mullins, P. G., & Christakou, A. (2017). In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention. PLoS One, 12, e0171338.CrossRefGoogle ScholarPubMed
Maddock, R. J., & Buonocore, M. H. (2012). MR spectroscopic studies of the brain in psychiatric disorders. Current Topics in Behavioral Neurosciences, 11, 199251.CrossRefGoogle ScholarPubMed
Marsman, A., Mandl, R. C., Klomp, D. W., Bohlken, M. M., Boer, V. O., Andreychenko, A., … Hulshoff Pol, H. E. (2014). GABA and glutamate in schizophrenia: A 7 T ¹H-MRS study. NeuroImage Clinical, 6, 398407.CrossRefGoogle ScholarPubMed
Martino, M., Magioncalda, P., Huang, Z., Conio, B., Piaggio, N., Duncan, N. W., … Northoff, G. (2016). Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proceedings of the National Academy of Sciences of the United States of America, 113, 48244829.CrossRefGoogle ScholarPubMed
Nejad, A. B., Fossati, P., & Lemogne, C. (2013). Self-referential processing, rumination, and cortical midline structures in major depression. Frontiers in Human Neuroscience, 7, 666.CrossRefGoogle ScholarPubMed
O'Gorman, R. L., Michels, L., Edden, R. A., Murdoch, J. B., & Martin, E. (2011). In vivo detection of GABA and glutamate with MEGA-PRESS: Reproducibility and gender effects. Journal of Magnetic Resonance Imaging, 33, 12621267.CrossRefGoogle ScholarPubMed
Ongur, D., Lundy, M., Greenhouse, I., Shinn, A. K., Menon, V., Cohen, B. M., & Renshaw, P. F. (2010). Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Research, 183, 5968.CrossRefGoogle Scholar
Page, C. E., & Coutellier, L. (2018). Reducing inhibition: A promising new strategy for the treatment of schizophrenia. EBioMedicine, 35, 2526.CrossRefGoogle ScholarPubMed
Pan, Y. J., Hsieh, M. H., & Liu, S. K. (2011). Visuospatial working memory deficits in remitted patients with bipolar disorder: Susceptibility to the effects of GABAergic agonists. Bipolar Disorders, 13, 365376.CrossRefGoogle Scholar
Puts, N. A., & Edden, R. A. (2012). In vivo magnetic resonance spectroscopy of GABA: A methodological review. Progress in Nuclear Magnetic Resonance Spectroscopy, 60, 2941.CrossRefGoogle Scholar
Quraishi, S., & Frangou, S. (2002). Neuropsychology of bipolar disorder: A review. Journal of Affective Disorders, 72, 209226.CrossRefGoogle ScholarPubMed
Ramadan, S., Lin, A., & Stanwell, P. (2013). Glutamate and glutamine: A review of in vivo MRS in the human brain. NMR in Biomedicine, 26, 16301646.CrossRefGoogle ScholarPubMed
Reddy-Thootkur, M., Kraguljac, N. V., & Lahti, A. C. (2022). The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders – A systematic review of magnetic resonance spectroscopy studies. Schizophrenia Research, 249, 7484.CrossRefGoogle ScholarPubMed
Sajonz, B., Kahnt, T., Margulies, D. S., Park, S. Q., Wittmann, A., Stoy, M., … Bermpohl, F. (2010). Delineating self-referential processing from episodic memory retrieval: Common and dissociable networks. Neuroimage, 50, 16061617.CrossRefGoogle ScholarPubMed
Schur, R. R., Draisma, L. W., Wijnen, J. P., Boks, M. P., Koevoets, M. G., Joels, M., … Vinkers, C. H. (2016). Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Human Brain Mapping, 37, 33373352.CrossRefGoogle ScholarPubMed
Scotti-Muzzi, E., Chile, T., Moreno, R., Pastorello, B. F., da Costa Leite, C., Henning, A., … Soeiro-de-Souza, M. G. (2021). ACC Glu/GABA ratio is decreased in euthymic bipolar disorder I patients: Possible in vivo neurometabolite explanation for mood stabilization. European Archives of Psychiatry and Clinical Neuroscience, 271, 537547.CrossRefGoogle ScholarPubMed
Sears, S. M., & Hewett, S. J. (2021). Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Experimental Biology and Medicine (Maywood, N.J.), 246, 10691083.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The mini-international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 20), 2233; quiz 34–57.Google ScholarPubMed
Smid, H. G., de Witte, M. R., Homminga, I., & van den Bosch, R. J. (2006). Sustained and transient attention in the continuous performance task. Journal of Clinical and Experimental Neuropsychology, 28, 859883.CrossRefGoogle ScholarPubMed
Soeiro-de-Souza, M. G., Henning, A., Machado-Vieira, R., Moreno, R. A., Pastorello, B. F., da Costa Leite, C., … Otaduy, M. C. (2015). Anterior cingulate glutamate-glutamine cycle metabolites are altered in euthymic bipolar I disorder. European Neuropsychopharmacology, 25, 22212229.CrossRefGoogle ScholarPubMed
Sohal, V. S., & Rubenstein, J. L. R. (2019). Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Molecular Psychiatry, 24, 12481257.CrossRefGoogle ScholarPubMed
Sosa-Moscoso, B., Ullauri, C., Chiriboga, J. D., Silva, P., Haro, F., & Leon-Rojas, J. E. (2022). Magnetic resonance spectroscopy and bipolar disorder: How feasible is this pairing? Cureus, 14, e23690.Google ScholarPubMed
Stratta, P., Daneluzzo, E., Prosperini, P., Bustini, M., Mattei, P., & Rossi, A. (1997). Is Wisconsin Card Sorting Test performance related to ‘working memory’ capacity? Schizophrenia Research, 27, 1119.CrossRefGoogle ScholarPubMed
Tsitsipa, E., & Fountoulakis, K. N. (2015). The neurocognitive functioning in bipolar disorder: A systematic review of data. Annals of General Psychiatry, 14, 42.CrossRefGoogle ScholarPubMed
Vargas, C., Lopez-Jaramillo, C., & Vieta, E. (2013). A systematic literature review of resting state network–functional MRI in bipolar disorder. Journal of Affective Disorders, 150, 727735.CrossRefGoogle ScholarPubMed
Volkow, N. D., Gur, R. C., Wang, G. J., Fowler, J. S., Moberg, P. J., Ding, Y. S., … Logan, J. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344349.Google ScholarPubMed
Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 4976.CrossRefGoogle ScholarPubMed
Yildiz-Yesiloglu, A., & Ankerst, D. P. (2006). Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: A systematic review of the in vivo proton magnetic resonance spectroscopy findings. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 969995.CrossRefGoogle ScholarPubMed
Zovetti, N., Rossetti, M. G., Perlini, C., Maggioni, E., Bontempi, P., Bellani, M., & Brambilla, P. (2020). Default mode network activity in bipolar disorder. Epidemiology and Psychiatric Sciences, 29, e166.CrossRefGoogle ScholarPubMed
Supplementary material: File

Tseng et al. supplementary material

Tseng et al. supplementary material
Download Tseng et al. supplementary material(File)
File 70.7 KB