Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T08:53:36.078Z Has data issue: false hasContentIssue false

Evaluating the interactive effects of dietary habits and human gut microbiome on the risks of depression and anxiety

Published online by Cambridge University Press:  25 January 2022

Yao Yao
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Xin Qi
Affiliation:
Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
Yumeng Jia
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Jing Ye
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Xiaomeng Chu
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Yan Wen
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Bolun Cheng
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Shiqiang Cheng
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Li Liu
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Chujun Liang
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Cuiyan Wu
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Xi Wang
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Yujie Ning
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Sen Wang
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
Feng Zhang*
Affiliation:
Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
*
Author for correspondence: Feng Zhang, E-mail: fzhxjtu@mail.xjtu.edu.cn

Abstract

Background

Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.

Methods

Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.

Results

We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).

Conclusions

Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The two authors contributed equally to this work.

References

Almeida, O. P., Draper, B., Pirkis, J., Snowdon, J., Lautenschlager, N. T., Byrne, G., … Pfaff, J. J. (2012). Anxiety, depression, and comorbid anxiety and depression: Risk factors and outcome over two years. International Psychogeriatrics, 24(10), 16221632. doi: 10.1017/S104161021200107XCrossRefGoogle ScholarPubMed
Amiri, S., & Behnezhad, S. (2019). Obesity and anxiety symptoms: A systematic review and meta-analysis. Neuropsychiatrie, 33(2), 7289. doi: 10.1007/s40211-019-0302-9CrossRefGoogle ScholarPubMed
Averina, O. V., Zorkina, Y. A., Yunes, R. A., Kovtun, A. S., Ushakova, V. M., Morozova, A. Y., … Chekhonin, V. P. (2020). Bacterial metabolites of human gut microbiota correlating with depression. International Journal of Molecular Sciences, 21(23), 9234. doi: 10.3390/ijms21239234.CrossRefGoogle ScholarPubMed
Balázs, J., Miklósi, M., Keresztény, A., Hoven, C. W., Carli, V., Wasserman, C., … Wasserman, D. (2013). Adolescent subthreshold-depression and anxiety: Psychopathology, functional impairment and increased suicide risk. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 54(6), 670677. doi: 10.1111/jcpp.12016CrossRefGoogle ScholarPubMed
Barandouzi, Z. A., Starkweather, A. R., Henderson, W. A., Gyamfi, A., & Cong, X. S. (2020). Altered composition of gut microbiota in depression: A systematic review. Frontiers in Psychiatry, 11, 541. doi: 10.3389/fpsyt.2020.00541CrossRefGoogle ScholarPubMed
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 70(2), 567590. doi: 10.1152/physrev.1990.70.2.567CrossRefGoogle ScholarPubMed
Bond, T., & Derbyshire, E. (2019). Tea compounds and the gut microbiome: Findings from trials and mechanistic studies. Nutrients, 11(10), 2364. doi: 10.3390/nu11102364.CrossRefGoogle ScholarPubMed
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., … Marchini, J. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562(7726), 203209. doi: 10.1038/s41586-018-0579-zCrossRefGoogle ScholarPubMed
Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203209.Google ScholarPubMed
Chen, Y.-H., Bai, J., Wu, D., Yu, S.-F., Qiang, X.-L., Bai, H., … Peng, Z.-W. (2019). Association between fecal microbiota and generalized anxiety disorder: Severity and early treatment response. Journal of Affective Disorders, 259, 5666. doi: 10.1016/j.jad.2019.08.014CrossRefGoogle ScholarPubMed
Cole, J. B., Florez, J. C., & Hirschhorn, J. N. (2020). Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nature Communications, 11(1), 1467. doi: 10.1038/s41467-020-15193-0CrossRefGoogle ScholarPubMed
Crost, E. H., Tailford, L. E., Le Gall, G., Fons, M., Henrissat, B., & Juge, N. (2013). Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS ONE, 8(10), e76341. doi: 10.1371/journal.pone.0076341CrossRefGoogle ScholarPubMed
Crouch, D. J. M., & Bodmer, W. F. (2020). Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proceedings of the National Academy of Sciences of the USA, 117(32), 1892418933. doi: 10.1073/pnas.2005634117CrossRefGoogle ScholarPubMed
Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461478. doi: 10.1038/s41575-019-0157-3CrossRefGoogle ScholarPubMed
Darooghegi Mofrad, M., Mozaffari, H., Sheikhi, A., Zamani, B., & Azadbakht, L. (2021). The association of red meat consumption and mental health in women: A cross-sectional study. Complementary Therapies in Medicine, 56, 102588. doi: 10.1016/j.ctim.2020.102588CrossRefGoogle ScholarPubMed
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., … Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559563. doi: 10.1038/nature12820CrossRefGoogle ScholarPubMed
Davis, K. A. S., Cullen, B., Adams, M., Brailean, A., Breen, G., Coleman, J. R. I., … Hotopf, M. (2019). Indicators of mental disorders in UK Biobank – A comparison of approaches. International Journal of Methods in Psychiatric Research, 28(3), e1796. doi: 10.1002/mpr.1796CrossRefGoogle ScholarPubMed
DeMartini, J., Patel, G., & Fancher, T. L. (2019). Generalized anxiety disorder. Annals of Internal Medicine, 170(7), ITC49ITC64. doi: 10.7326/AITC201904020CrossRefGoogle ScholarPubMed
Dharmayani, P. N. A., Juergens, M., Allman-Farinelli, M., & Mihrshahi, S. (2021). Association between fruit and vegetable consumption and depression symptoms in young people and adults aged 15-45: A systematic review of cohort studies. International Journal of Environmental Research and Public Health, 18(2), 780. doi: 10.3390/ijerph18020780.CrossRefGoogle ScholarPubMed
d'Hennezel, E., Abubucker, S., Murphy, L. O., & Cullen, T. W. (2017). Total lipopolysaccharide from the human gut microbiome silences Toll-like receptor signaling. mSystems, 2(6), e0004617. doi: 10.1128/mSystems.00046-17.Google ScholarPubMed
Dong, X., Yang, C., Cao, S., Gan, Y., Sun, H., Gong, Y., … Lu, Z. (2015). Tea consumption and the risk of depression: A meta-analysis of observational studies. Australian & New Zealand Journal of Psychiatry, 49(4), 334345. doi: 10.1177/0004867414567759CrossRefGoogle ScholarPubMed
Duman, R. S., Sanacora, G., & Krystal, J. H. (2019). Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 102(1), 7590. doi: 10.1016/j.neuron.2019.03.013CrossRefGoogle ScholarPubMed
Fatahi, S., Matin, S. S., Sohouli, M. H., Găman, M. A., Raee, P., Olang, B., … Shidfar, F. (2021). Association of dietary fiber and depression symptom: A systematic review and meta-analysis of observational studies. Complementary Therapies in Medicine, 56, 102621. doi: 10.1016/j.ctim.2020.102621CrossRefGoogle ScholarPubMed
Forbes, J. D., Chen, C. Y., Knox, N. C., Marrie, R. A., El-Gabalawy, H., de Kievit, T., … Van Domselaar, G. (2018). A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome, 6(1), 221. doi: 10.1186/s40168-018-0603-4CrossRefGoogle ScholarPubMed
Gibson-Smith, D., Bot, M., Brouwer, I. A., Visser, M., Giltay, E. J., & Penninx, B. W. J. H. (2020). Association of food groups with depression and anxiety disorders. European Journal of Nutrition, 59(2), 767778. doi: 10.1007/s00394-019-01943-4CrossRefGoogle ScholarPubMed
Hettema, J. M., Neale, M. C., & Kendler, K. S. (2001). A review and meta-analysis of the genetic epidemiology of anxiety disorders. The American Journal of Psychiatry, 158(10), 15681578. doi: 10.1176/appi.ajp.158.10.1568CrossRefGoogle ScholarPubMed
Hindorff, L. A., Gillanders, E. M., & Manolio, T. A. (2011). Genetic architecture of cancer and other complex diseases: Lessons learned and future directions. Carcinogenesis, 32(7), 945954. doi: 10.1093/carcin/bgr056CrossRefGoogle ScholarPubMed
Höglund, E., Øverli, Ø, & Winberg, S. (2019). Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Frontiers in Endocrinology, 10(158). doi: 10.3389/fendo.2019.00158. PMID: 31024440; PMCID: PMC6463810.CrossRefGoogle ScholarPubMed
Hu, D., Cheng, L., & Jiang, W. (2019). Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. Journal of Affective Disorders, 245, 348355. doi: 10.1016/j.jad.2018.11.015CrossRefGoogle ScholarPubMed
Hughes, D. A., Bacigalupe, R., Wang, J., Rühlemann, M. C., Tito, R. Y., Falony, G., … Raes, J. (2020). Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 5(9), 10791087. doi: 10.1038/s41564-020-0743-8CrossRefGoogle ScholarPubMed
Jacka, F. N., Pasco, J. A., Mykletun, A., Williams, L. J., Hodge, A. M., O'Reilly, S. L., … Berk, M. (2010). Association of Western and traditional diets with depression and anxiety in women. The American Journal of Psychiatry, 167(3), 305311. doi: 10.1176/appi.ajp.2009.09060881CrossRefGoogle ScholarPubMed
Jang, H.-M., Lee, K.-E., Lee, H.-J., & Kim, D.-H. (2018). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific Reports, 8(1), 13897. doi: 10.1038/s41598-018-31764-0CrossRefGoogle ScholarPubMed
Ju, T., Kong, J. Y., Stothard, P., & Willing, B. P. (2019). Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. The ISME Journal, 13(6), 15201534. doi: 10.1038/s41396-019-0364-5CrossRefGoogle ScholarPubMed
Kakoschke, N., Zajac, I. T., Tay, J., Luscombe-Marsh, N. D., Thompson, C. H., Noakes, M., … Brinkworth, G. D. (2021). Effects of very low-carbohydrate vs. high-carbohydrate weight loss diets on psychological health in adults with obesity and type 2 diabetes: A 2-year randomized controlled trial. European Journal of Nutrition, 60(8), 42514262. doi: 10.1007/s00394-021-02587-z.CrossRefGoogle ScholarPubMed
Karimi, E., Yarizadeh, H., Setayesh, L., Sajjadi, S. F., Ghodoosi, N., Khorraminezhad, L., & Mirzaei, K. (2021). High carbohydrate intakes may predict more inflammatory status than high fat intakes in pre-menopause women with overweight or obesity: A cross-sectional study. BMC Research Notes, 14(1), 279. doi: 10.1186/s13104-021-05699-1CrossRefGoogle ScholarPubMed
Kessler, R. C., Andrews, G., Mroczek, D., Ustun, B., & Wittchen, H.-U. (1998). The World Health Organization Composite International Diagnostic Interview short-form (CIDI-SF). International Journal of Methods in Psychiatric Research, 7(4), 171185. doi: https://doi.org/10.1002/mpr.47CrossRefGoogle Scholar
Knudsen, J. K., Bundgaard-Nielsen, C., Hjerrild, S., Nielsen, R. E., Leutscher, P., & Sørensen, S. (2021). Gut microbiota variations in patients diagnosed with major depressive disorder-A systematic review. Brain and Behavior, 11(7), e02177. doi: 10.1002/brb3.2177.CrossRefGoogle ScholarPubMed
Kroenke, K., Spitzer, R. L., Williams, J. B., & Löwe, B. (2010). The patient health questionnaire somatic, anxiety, and depressive symptom scales: A systematic review. General Hospital Psychiatry, 32(4), 345359. doi: 10.1016/j.genhosppsych.2010.03.006CrossRefGoogle ScholarPubMed
Li, Y., Lv, M. R., Wei, Y. J., Sun, L., Zhang, J. X., Zhang, H. G., & Li, B. (2017). Dietary patterns and depression risk: A meta-analysis. Psychiatry Research, 253, 373382. doi: 10.1016/j.psychres.2017.04.020CrossRefGoogle ScholarPubMed
Liu, R. T., Rowan-Nash, A. D., Sheehan, A. E., Walsh, R. F. L., Sanzari, C. M., Korry, B. J., & Belenky, P. (2020). Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain, Behavior, and Immunity, 88, 308324. doi: 10.1016/j.bbi.2020.03.026CrossRefGoogle Scholar
Lotta, L. A., Mokrosiński, J., Mendes de Oliveira, E., Li, C., Sharp, S. J., Luan, J., … Farooqi, I. S. (2019). Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell, 177(3), 597607.e599. doi: 10.1016/j.cell.2019.03.044CrossRefGoogle ScholarPubMed
Luo, S., Au Yeung, S. L., Zhao, J. V., Burgess, S., & Schooling, C. M. (2019). Association of genetically predicted testosterone with thromboembolism, heart failure, and myocardial infarction: Mendelian randomisation study in UK Biobank. BMJ, 364, l476. doi: 10.1136/bmj.l476CrossRefGoogle ScholarPubMed
Maes, M., Kubera, M., Leunis, J. C., & Berk, M. (2012). Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. Journal of Affective Disorders, 141(1), 5562. doi: 10.1016/j.jad.2012.02.023CrossRefGoogle ScholarPubMed
Maniam, J., Antoniadis, C. P., Le, V., & Morris, M. J. (2016). A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers. Psychoneuroendocrinology, 68, 202209. doi: 10.1016/j.psyneuen.2016.03.007CrossRefGoogle ScholarPubMed
Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W. M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics (Oxford, England), 26(22), 28672873. doi: 10.1093/bioinformatics/btq559Google ScholarPubMed
Martínez, I., Wallace, G., Zhang, C., Legge, R., Benson, A. K., Carr, T. P., … Walter, J. (2009). Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Applied and Environmental Microbiology, 75(12), 41754184. doi: 10.1128/AEM.00380-09CrossRefGoogle Scholar
Meddens, S. F. W., de Vlaming, R., Bowers, P., Burik, C. A. P., Linnér, R. K., Lee, C., … Koellinger, P. D. (2020). Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Molecular Psychiatry, 26(6), 20562069. doi: 10.1038/s41380-020-0697-5.CrossRefGoogle ScholarPubMed
Ménard, C., Hodes, G. E., & Russo, S. J. (2016). Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 321, 138162. doi: 10.1016/j.neuroscience.2015.05.053CrossRefGoogle ScholarPubMed
Miller, A. H., & Raison, C. L. (2016). The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nature Reviews Immunology, 16(1), 2234. doi: 10.1038/nri.2015.5CrossRefGoogle Scholar
Noble, E. E., Hsu, T. M., Jones, R. B., Fodor, A. A., Goran, M. I., & Kanoski, S. E. (2017). Early-life sugar consumption affects the rat microbiome independently of obesity. The Journal of Nutrition, 147(1), 2028. doi: 10.3945/jn.116.238816CrossRefGoogle ScholarPubMed
Norde, M. M., Collese, T. S., Giovannucci, E., & Rogero, M. M. (2021). A posteriori dietary patterns and their association with systemic low-grade inflammation in adults: A systematic review and meta-analysis. Nutrition Reviews, 79(3), 331350. doi: 10.1093/nutrit/nuaa010CrossRefGoogle ScholarPubMed
Paoli, A., Mancin, L., Bianco, A., Thomas, E., Mota, J. F., & Piccini, F. (2019). Ketogenic diet and microbiota: Friends or enemies? Genes, 10(7), 534. doi: 10.3390/genes10070534CrossRefGoogle ScholarPubMed
Peirce, J. M., & Alviña, K. (2019). The role of inflammation and the gut microbiome in depression and anxiety. Journal of Neuroscience Research, 97(10), 12231241. doi: https://doi.org/10.1002/jnr.24476CrossRefGoogle Scholar
Peris-Sampedro, F., Mounib, M., Schéle, E., Edvardsson, C. E., Stoltenborg, I., Adan, R. A. H., & Dickson, S. L. (2019). Impact of free-choice diets high in fat and different sugars on metabolic outcome and anxiety-like behavior in rats. Obesity (Silver Spring, MD), 27(3), 409419. doi: 10.1002/oby.22381CrossRefGoogle ScholarPubMed
Pittayanon, R., Lau, J. T., Leontiadis, G. I., Tse, F., Yuan, Y., Surette, M., … Moayyedi, P. (2020). Differences in gut microbiota in patients with vs without inflammatory bowel diseases: A systematic review. Gastroenterology, 158(4), 930946.e1. doi: 10.1053/j.gastro.2019.11.294.CrossRefGoogle ScholarPubMed
Redruello, B., Saidi, Y., Sampedro, L., Ladero, V., Del Rio, B., & Alvarez, M. A. (2021). GABA-producing Lactococcus lactis strains isolated from camel's milk as starters for the production of GABA-enriched cheese. Foods (Basel, Switzerland), 10(3), 633. doi: 10.3390/foods10030633Google ScholarPubMed
Rothenberg, D. O., & Zhang, L. (2019). Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients, 11(6), 1361. doi: 10.3390/nu11061361.CrossRefGoogle ScholarPubMed
Santos, C. J., Ferreira, A. V. M., Oliveira, A. L., Oliveira, M. C., Gomes, J. S., & Aguiar, D. C. (2018). Carbohydrate-enriched diet predispose to anxiety and depression-like behavior after stress in mice. Nutritional Neuroscience, 21(1), 3339. doi: 10.1080/1028415X.2016.1213529CrossRefGoogle ScholarPubMed
Satokari, R., Fuentes, S., Mattila, E., Jalanka, J., de Vos, W. M., & Arkkila, P. (2014). Fecal transplantation treatment of antibiotic-induced, noninfectious colitis and long-term microbiota follow-up. Case Reports in Medicine, 2014, 913867. doi: 10.1155/2014/913867CrossRefGoogle ScholarPubMed
Shahinozzaman, M., Raychaudhuri, S., Fan, S., & Obanda, D. N. (2021). Kale attenuates inflammation and modulates gut microbial composition and function in C57BL/6J mice with diet-induced obesity. Microorganisms, 9(2), 238. doi: 10.3390/microorganisms9020238CrossRefGoogle ScholarPubMed
Shen, X., Howard, D. M., Adams, M. J., Hill, W. D., Clarke, T.-K., Deary, I. J., … McIntosh, A. M. (2020). A phenome-wide association and Mendelian randomisation study of polygenic risk for depression in UK Biobank. Nature Communications, 11(1), 2301. doi: 10.1038/s41467-020-16022-0CrossRefGoogle ScholarPubMed
Simpson, C. A., Diaz-Arteche, C., Eliby, D., Schwartz, O. S., Simmons, J. G., & Cowan, C. S. M. (2021). The gut microbiota in anxiety and depression – A systematic review. Clinical Psychology Review, 83, 101943. doi: 10.1016/j.cpr.2020.101943CrossRefGoogle ScholarPubMed
Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., … Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1), 73. doi: 10.1186/s12967-017-1175-yCrossRefGoogle ScholarPubMed
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 48, 258264. doi: 10.1016/j.bbi.2015.04.003CrossRefGoogle ScholarPubMed
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. The American Journal of Psychiatry, 157(10), 15521562. doi: 10.1176/appi.ajp.157.10.1552CrossRefGoogle ScholarPubMed
van de Wouw, M., Boehme, M., Lyte, J. M., Wiley, N., Strain, C., O'Sullivan, O., … Cryan, J. F. (2018). Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations. The Journal of Physiology, 596(20), 49234944. doi: 10.1113/jp276431CrossRefGoogle ScholarPubMed
Vanegas, S. M., Meydani, M., Barnett, J. B., Goldin, B., Kane, A., Rasmussen, H., … Meydani, S. N. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. The American Journal of Clinical Nutrition, 105(3), 635650. doi: 10.3945/ajcn.116.146928CrossRefGoogle Scholar
Włodarczyk, A., Cubała, W. J., & Stawicki, M. (2021). Ketogenic diet for depression: A potential dietary regimen to maintain euthymia? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 109, 110257. doi: 10.1016/j.pnpbp.2021.110257CrossRefGoogle ScholarPubMed
Xing, L., Zhang, H., Qi, R., Tsao, R., & Mine, Y. (2019). Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. Journal of Agricultural and Food Chemistry, 67(4), 10291043. doi: 10.1021/acs.jafc.8b06146CrossRefGoogle ScholarPubMed
Yang, H. L., Li, M. M., Zhou, M. F., Xu, H. S., Huan, F., Liu, N., … Jiang, L. (2021). Links between gut dysbiosis and neurotransmitter disturbance in chronic restraint stress-induced depressive behaviours: The role of inflammation. Inflammation, 44(6), 24482462. doi: 10.1007/s10753-021-01514-y.CrossRefGoogle ScholarPubMed
Zhang, C., Zhang, M., Pang, X., Zhao, Y., Wang, L., & Zhao, L. (2012). Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. The ISME Journal, 6(10), 18481857. doi: 10.1038/ismej.2012.27CrossRefGoogle ScholarPubMed
Supplementary material: File

Yao et al. supplementary material

Yao et al. supplementary material 1

Download Yao et al. supplementary material(File)
File 41.1 KB
Supplementary material: File

Yao et al. supplementary material

Yao et al. supplementary material 2

Download Yao et al. supplementary material(File)
File 185 KB