Skip to main content Accessibility help
×
Home

Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin–biotin system

  • DAVID E. HYRE (a1), ISOLDE LE TRONG (a2), STEFANIE FREITAG (a2), RONALD E. STENKAMP (a2) and PATRICK S. STAYTON (a1)...

Abstract

The contribution of the Ser45 hydrogen bond to biotin binding activation and equilibrium thermodynamics was investigated by biophysical and X-ray crystallographic studies. The S45A mutant exhibits a 1,700-fold greater dissociation rate and 907-fold lower equilibrium affinity for biotin relative to wild-type streptavidin at 37 °C, indicating a crucial role in binding energetics. The crystal structure of the biotin-bound mutant reveals only small changes from the wild-type bound structure, and the remaining hydrogen bonds to biotin retain approximately the same lengths. No additional water molecules are observed to replace the missing hydroxyl, in contrast to the previously studied D128A mutant. The equilibrium ΔG°, ΔH°, ΔS°, ΔC°P, and activation ΔG[Dagger] of S45A at 37 °C are −13.7 ± 0.1 kcal/mol, −21.1 ± 0.5 kcal/mol, −23.7 ± 1.8 cal/mol K, −223 ± 12 cal/mol K, and 20.0 ± 2.5 kcal/mol, respectively. Eyring analysis of the large temperature dependence of the S45A off-rate resolves the ΔH[Dagger] and ΔS[Dagger] of dissociation, 25.8 ± 1.2 kcal/mol and 18.7 ± 4.3 cal/mol K. The large increases of ΔH[Dagger] and ΔS[Dagger] in the mutant, relative to wild-type, indicate that Ser45 could form a hydrogen bond with biotin in the wild-type dissociation transition state, enthalpically stabilizing it, and constraining the transition state entropically. The postulated existence of a Ser45-mediated hydrogen bond in the wild-type streptavidin transition state is consistent with potential of mean force simulations of the dissociation pathway and with molecular dynamics simulations of biotin pullout, where Ser45 is seen to form a hydrogen bond with the ureido oxygen as biotin slips past this residue after breaking the native hydrogen bonds.

Copyright

Corresponding author

Reprint requests to: Patrick S. Stayton, Box 352125, Department of Bioengineering, University of Washington, Seattle, Washington 98195-2125; e-mail: stayton@u.washington.edu.

Keywords

Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin–biotin system

  • DAVID E. HYRE (a1), ISOLDE LE TRONG (a2), STEFANIE FREITAG (a2), RONALD E. STENKAMP (a2) and PATRICK S. STAYTON (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed