Skip to main content Accessibility help
×
Home

Splicing of plant pre-mRNAs

  • Craig G. Simpson (a1), Gordon G. Simpson (a1), Gillian Clark (a1), David J. Leader (a1), Petra Vaux (a1), F. Guerineau (a1), Robbie Waugh (a1) and John W. S. Brown (a1)...

Synopsis

Pre-messenger RNA (pre-mRNA) splicing or the removal of introns from pre-mRNA transcripts is a key process in the maturation of mRNA. This process requires the assembly of a large complex of RNA and protein molecules, called the splicosome, on the pre-mRNA transcripts. Molecular and biochemical analyses of plant intron sequence and structure and of the components of the plant spliceosome are providing information on the mechanism of intron recognition and splice site selection in both monocoty-ledonous and dicotyledonous plants. This knowledge will help in gaining an understanding of phenomena such as the difference in splicing between monocotyledonous and dictoyledonous plants, the enhancement of gene expression brought about by the presence of some introns and alternative splicing. The importance of introns and pre-mRNA splicing to accurate and regulated gene expression, therefore, is of direct relevance to transgene expression and genetic manipulation.

Copyright

Corresponding author

1 To whom correspondence should be addressed.

References

Hide All
Abel, S., Kiss, T. & Solymosy, F. 1989. Molecular analysis of eight Ul RNA gene candidates from tomato that could potentially be transcribed into U1 RNA sequence variants differing from each other in similar regions of secondary structure. Nucleic Acids Research 17, 6319–37.
Bentley, R. C. & Keene, J. D. 1991. Recognition of U1 and U2 small nuclear RNAs can be altered by a 5-amino-acid segment in the U2 small nuclear ribonucleoprotein particle (snRNP) B” protein and through interactions with U2 snRNP-A' protein. Molecullar and Cellular Biology 11, 1829–39.
Berman, S. A., Bursztain, S., Bowen, B. & Gilbert, W. 1990. Localization of an acetylcholine receptor intron to the nuclear membrane. Science 247, 212–14.
Bermingham, J. R. & Scott, M. P. 1988. Developmentally regulated alternative splicing of transcripts from the Drosophila homeotic gene Anntennapedia can produce four different proteins. EMBO Journal 7, 3211–22.
Bornstein, P., McKay, J., Liska, D. J., Apone, S. & Devarayalu, S. 1988. Interactions between the promoter and first intron are involved in transcriptional control of α 1(1) collagen gene expression. Molecular and Cellular Biology 8, 4851–7.
Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. 1978. Ovalbumin gene: Evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proceedings of the National Academy of Sciences, USA 75, 4853–7.
Brown, J. W. S. 1986. A catalogue of splice junction and putative branch point sequences from plant introns. Nucleic Acids Research 14, 9549–59.
Brown, J. W. S. & Waugh, R. 1989. Maize U2snRNAs: gene sequence and expression. Nucleic Acids Research 17, 89919001.
Callis, J., Fromm, M. & Walbot, V. 1987. Introns increase gene expression in cultured maize cell. Genes & Development 1, 1183–200.
Egeland, D. B., Sturtevant, A. P. & Schuler, M. A. 1989. Molecular analysis of dicot and monocot small nuclear RNA populations. The Plant Cell 1, 633–43.
Eperon, L. P., Graham, I. R., Griffiths, A. D. & Eperon, I. C. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase? Cell 54, 393401.
Fu, X-Y. & Manley, J. L. 1987. Factors influencing alternative splice site utilisation in vivo. Molecular and Cellular Biology 7, 738–48.
Frey, M., Tavantzis, S. M. & Saedler, H. 1989. The maize En-l/Spm element transposes in potato. Molecular and General Genetics 217, 172–7.
Goodall, G. J. & Filipowicz, W. 1989. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58, 473–83.
Goodall, G. J. & Filipowicz, W. 1990. The minimum functional length of pre-mRNA introns in monocots and dicots. Plant Molecular Biology 14, 727–33.
Goodall, G. J., Kiss, T. & Filipowicz, W. 1991. Nuclear RNA splicing and small nuclear RNAs and their genes in higher plants. Oxford Surveys in Plant Molecular and Cell Biology 7, (in press).
Green, M. R. 1986. Pre-mRNA splicing. Annual Review of Genetics 20, 671708.
Guthrie, C. & Patterson, B. 1988. Spliceosomal snRNAs. Annual Review of Genetics 22, 387419.
Hanley, B. A. & Schuler, M. A. 1988. Plant intron sequences: evidence for distinct groups of introns. Nucleic Acids Research 16, 7159–76.
Hanley, B. A. & Schuler, M. A. 1991. cDNA cloning of U1, U2, U4 and U5 snRNA families expressed in pea nuclei. Nucleic Acids Research 19, 1861–9.
Hershberger, R. P. & Culp, L. A. 1990. Cell-type-specific expression of alternatively spliced human fibronectin IIICS mRNAs. Molecular and Cellular Biology 10, 662–71.
Huang, M. T. P. & Gorman, C. M. 1990. Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucleic Acids Research 18, 937–47.
Hunt, A. G., Mogen, B. D., Chu, N. M. & Chua, N.-H. 1991. The SV40 small t intron is accurately and efficiently spliced in tobacco cells. Plant Molecular Biology 16, 375–9.
Keith, B. & Chua, N-H. 1986. Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO Journals, 2419–525.
Kenan, D. J., Query, C. C. & Keene, J. D. 1991. RNA recognition: towards identifying determinants of specificity. TIBS 16, 214–20.
Koes, R. E., Spelt, C. E., van den Elzen, P. J. M. & Mol, J. N. M. 1989. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene 81, 245–57.
Kyozuka, J., Izawa, T., Nakajima, M. & Shimamoto, K. 1990. Effect of the promoter and first intron of maize Adh-1 on foreign gene expression in rice. Maydica 35, 353–7.
Krainer, A. R. & Maniatis, T. 1988. RNA Splicing. In Transcription and splicing, pp. 131206, eds Hames, B. D. & Glover, D. M. Oxford IRL Press.
Libri, D., Piseri, A. & Fiszman, M. Y. 1991. Tissue-specific splicing in vivo of the β-tropomyosin gene: Dependance on an RNA secondary structure. Science 252, 1842–5.
Lockard, R. E., Currey, K., Browner, M., Lawrence, C. & Maizel, J. 1986. Secondary structure model for mouse βMaj globin mRNA derived from enzymatic digestion data, comparative sequence and computer analysis. Nucleic Acids Research 14, 5827–41.
Luehrsen, K. R. & Walbot, V. 1991. Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Molecular and General Genetics 225, 8193.
Lührmann, R., Kastner, B. & Bach, M. 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochemica et Biophysica Acta 1087, 265–92.
McCullough, A. J., Lou, H. & Schuler, M. A. 1991. In vivo analysis of plant pre-mRNA splicing using an autonomously replicating vector. Nucleic Acids Research 19, 3001–9.
McElroy, D., Zhang, W., Cao, J. & Wu, R. 1990. Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell 2, 163–71.
Maas, C., Laufs, J., Grant, S., Korfhage, C. & Wern, W. 1991. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000 fold. Plant Molecular Biology 16, 199207.
Maniatis, T. & Reed, R. 1987. The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature 325, 673–8.
Mascarenhas, D., Mettler, I. J., Pierce, D. A. & Lowe, H. W. 1990. Intron-mediated enhancement of heterologous gene expression in maize. Plant Molecular Biology 15, 913920.
Masson, P., Rutherford, G., Banks, J. A. & Federoff, N. 1989. Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58, 755–65.
Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Research 10, 459–72.
Nagai, K., Oubridge, C., Jessen, T. H., Li, J. & Evans, P. R. 1990. Crystal structure of the RNA-binding domain of the Ul small nuclear ribonucleoprotein A. Nature 348, 515–20.
Niwa, M., Rose, S. D. & Berget, S. M. 1990. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes & Development 4, 1552–9.
Oard, J. H., Paige, D. & Dvorak, J. 1989. Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Reports 8, 156–60.
d'Orval, B. C., Carafa, Y. d'A., Sirand-Pugnet, P. Gallego, M., Brody, E. & Marie, J. 1991. RNA secondary structure repression of a muscle-specific exon in HeLa cell nuclear extracts. Science 252, 1823–8.
Oshima, R. G., Abrams, L. & Kulesh, D. 1990. Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes & Development 4, 835–48.
Ottavio, L., Cheng, C-D., Rizzo, M-G., Travali, S., Casadevall, C. & Baserga, R. 1990. Importance of introns in the growth regulation of mRNA levels of the proliferating cell nuclear antigen gene. Molecular and Cellular Biology 10, 303–9.
Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S. & Sharp, P. A. 1986. Annual Review of Biochemistry 55, 1119–50.
Palfi, Z., Bach, M., Solymosy, F. & Lührmann, R. 1989. Purification of the major UsnRNPs from broad bean nuclear extracts and characterisation of their protein constituents. Nucleic Acids Research 17, 1445–58.
Parker, R., Siliciano, P. G. & Guthrie, C. 1987. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49, 229–39.
Patterson, B. & Guthrie, C. 1991. A U-rich tract enhances usage of an alternative 3' splice site in yeast. Cell 58, 473–83.
Peterhaus, A., Datta, S. K., Datta, K., Goodall, G. J. Potrykus, I. P. & Paszkowski, J. 1990. Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Molecular General Genetics 222, 361–8.
Raboy, V., Kim, H-Y., Schiefelbein, J. W. & Nelson, O. E. Jr. 1989. Deletions in a dSpm insert in a bronze-I allele alter RNA processing and gene expression. Genetics 122, 695703.
Reed, R. & Maniatis, T. 1986. A role for exon sequences and splice site proximity in splice site selection. Cell 46, 681–90.
Robberson, B. L., Cote, G. J. & Berget, S. M. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Molecular and Cellular Biology 10, 8494.
Ruby, S. W. & Abelson, J. 1991. Pre-mRNA splicing in yeast. Trends in Genetics 7, 7985.
Ruskin, B. & Green, M. R. 1985. An RNA processing activity that debranches RNA lariats. Science 229, 135–40.
Scherly, D., Boelens, W., Dathan, N. A., van Venrooij, W. J. & Mattaj, I. 1990a. Major determinants of the specificity of interaction between small nuclear ribonucleoproteins Ul A and U2B” and their cognate RNAs. Nature 345, 502–6.
Scherly, D., Boelens, W., Dathan, N. A., van Venrooij, W. J. & Mattaj, I. 1990b. The U2B” RNP motif as a site of protein-protein interaction. EM BO Journal 9, 3675–81.
Simpson, G. G., Vaux, P., Clark, G., Waugh, R., Beggs, J. D. & Brown, J. W. S. 1991. Evolutionary conservation of the spliceosomal protein U2B”. Nucleic Acids Research 19, 5213–7.
Sherwood, A. L., Bottenus, R. E., Martzen, M. R. & Bornstein, P. 1990. Structural and functional analysis of the first intron of the human α2(I) collagen-encoding gene. Gene 89, 239–44.
Smith, C. W. J., Patton, J. G. & Nadal-Ginard, B. 1989. Alternative splicing in the control of gene expression. Annual Review of Genetics 23, 527–77.
Solnick, D. & Lee, S. I. 1987. Amount of RNA secondary structure required to induce an alternative splice. Molecular and Cellular Biology 7, 3194–8.
Steitz, J. A., Black, D. L., Gerke, V., Parker, K. A., Krämer, A., Frendeway, D. & Keller, W. 1988. Functions of the abundant UsnRNPs. In Structure and function of major and minor small nuclear ribonucleoprotein particles pp. 115–54, ed. Birnstiel, M. L. Berlin: Springer Verlag.
Streuli, M. & Saito, H. 1989. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO Journal 8, 787–96.
Tanaka, A., Mita, S., Ohta, S., Kyozuka, J., Shimamoto, K. & Nakamura, K. 1990. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Research 18, 6767–70.
Tollervey, D. 1987. High level complexity of small nuclear RNAs in fungi and plants. Journal of Molecular Biology 196, 355–61.
Vankan, P. & Filipowicz, W. 1988. Structure of U2snRNA genes of Arabidopsis thaliana and their expression in electroporated plant protoplasts. EMBO Journal 7, 791–9.
Vankan, P. & Filipowicz, W. 1989. A UsnRNA gene-specific upstream element and a -30 ‘TATA’ box are required for transcription of the U2snRNA gene of Arabidopsis thaliana. EMBO Journal 8, 3875–82.
Waibel, F. & Filipowicz, W. 1990. RNA polymerase specificity of transcription of Arabidopsis UsnRNA genes determined by promoter element spacing. Nature 346, 199202.
Waugh, R., Clark, G., Vaux, P. & Brown, J. W. S. 1991. Sequence and expression of potato U2snRNA genes. Nucleic Acids Research 19, 249–56.
Weil, D., Brosset, S. & Dautry, F. 1990. RNA processing is a limiting step for murine tumor necrosis factor β expression in response to interleukin-2. Molecular and Cellular Biology 10, 5865–75.
Werneke, J. M., Chatfield, J. M. & Ogren, W. L. 1989. Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase-activase polypeptides in spinach and Arabidopsis. The Plant Cell 1, 815–25.
Wiebauer, K., Herrero, J-J. & Filipowicz, W. 1988. Nuclear pre-mRNA processing in plants: Distinct modes of 3' splice site selection in plants and animals. Molecular and Cellular Biology 8, 2042–51.
Wu, J. & Manley, J. 1989. Mammalian pre-mRNA branch site selection by U2 snRNP involves base-pairing. Genes & Development 3, 1553–61.
Zhuang, Y. & Weiner, A. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes & Development 3, 1545–52.

Splicing of plant pre-mRNAs

  • Craig G. Simpson (a1), Gordon G. Simpson (a1), Gillian Clark (a1), David J. Leader (a1), Petra Vaux (a1), F. Guerineau (a1), Robbie Waugh (a1) and John W. S. Brown (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed