Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T02:00:27.680Z Has data issue: false hasContentIssue false

Induction of pathogen defence genes in parsley (Petroselinum crispum L.) plants by ozone

Published online by Cambridge University Press:  05 December 2011

Heidrun Eckey-Kaltenbach
Affiliation:
GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Biochemische Pflanzenpathologie, Neuherberg, D-85764 Oberschleißheim, Germany
Erich Großkopf
Affiliation:
GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Biochemische Pflanzenpathologie, Neuherberg, D-85764 Oberschleißheim, Germany
Heinrich Sandermann Jr
Affiliation:
GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Biochemische Pflanzenpathologie, Neuherberg, D-85764 Oberschleißheim, Germany
Dietrich Ernst*
Affiliation:
GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Biochemische Pflanzenpathologie, Neuherberg, D-85764 Oberschleißheim, Germany
*
§Author for proofs and correspondence (fax +49 89 3187 3383).
Get access

Synopsis

Parsley (Petroselinum crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV-irradiation by the synthesis of flavone glycosides, whereas ozone treatment results in the induction of both pathways. Ozone treatment (200 nl 1−1, 10 h) of parsley seedlings results in an increased mRNA level of early genes within 3 h [pathogenesis related proteins PR1, PR2 and an elicitor-induced protein with unknown function (Eli 16)], of intermediate induced genes within 6 h [phenylalanine ammonia-lyase (PAL), 4-coumaroyl-CoA ligase (4CL), chalcone synthase (CHS)], and of late genes within 12 h [hydroxyproline-rich glycoprotein (HRGP), peroxidase (POD)]. 2D-PAGE of in vitro translated poly(A)+ RNA isolated from ozone-treated parsley seedlings revealed about 20 induced and 10 repressed translation products. A cDNA library from parsley seedlings was differential screened, yielding several induced cDNA clones. One of the ozone-induced cDNA clones could be identified as coding for PR1-1 by hybrid-selected in vitro translation and by DNA sequence analysis.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*Present address: Amersham Buchler, Gieselweg 1, Postfach 1149, D-38110 Braunschweig, Germany.

References

Adam, A., Farkas, T., Somlyai, G., Hevesi, M. & Kiraly, Z. 1989. Consequence of O2- generation during a bacterially induced hypersensitive response in tobacco: deterioration of membrane lipids. Physiological and Molecular Plant Pathology 34, 1326.CrossRefGoogle Scholar
Apostol, I., Heinstein, P. F. & Low, P. S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiology 90, 109–16.CrossRefGoogle ScholarPubMed
Bollmann, J. & Hahlbrock, K. 1990. Timing of changes in protein synthesis pattern in elicitor-treated cell suspension cultures of parsley (Petroselinum crispum). Zeitschrift für Naturforschung 45c, 1011–20.CrossRefGoogle Scholar
Bors, W., Langebartels, C., Michel, C. & Sandermann, H. 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28, 1589–95.CrossRefGoogle Scholar
Brederode, F. T., Linthorst, H. J. M. & Bol, J. F. 1991. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, etephon treatment, UV light and wounding. Plant Molecular Biology 17, 1117–25.CrossRefGoogle Scholar
Chappell, J. & Hahlbrock, K. 1984. Transcription of plant defence genes in response to UV-light or fungal elicitor. Nature 311, 76–8.CrossRefGoogle Scholar
Devlin, W. S. & Gustine, D. L. 1992. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiology 11, 1189–95.CrossRefGoogle Scholar
Doke, N. 1983. Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology 23, 359–67.CrossRefGoogle Scholar
Eckey, H. 1992. Biochemische und Molekularbiologische Untersuchungen Ozon-induzierter Abwehrreaktionen in Petersilie. Thesis, Ludwig-Maximilians-Universität München.Google Scholar
Eckey-Kaltenbach, H., Heller, W., Sonnenbichler, J., Zetl, I., Schafer, W., Ernst, D. & Sandermann, H. 1993. Oxidative stress and plant secondary metabolites: I. 6″-malonylapiin in parsley (Petroselinum crispum L.). Phytochemistry 34, 687–91.CrossRefGoogle Scholar
Eckey-Kaltenbach, H., Ernst, D., Heller, W. & Sandermann, H. 1994. Biochemical plant responses to ozone. IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiology 104, 6774.CrossRefGoogle ScholarPubMed
Ernst, D., Schraudner, M., Langebartels, C. & Sandermann, H. 1992. Ozone-induced changes of mRNA levels of β-1,3-glucanase, chitinase and ‘pathogenesis-related’ protein lb in tobacco plants. Plant Molecular Biology 20, 673–82.CrossRefGoogle Scholar
Feinberg, A. P. & Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Guderian, R. 1985. Air pollution by photochemical oxidants. Berlin: Springer.CrossRefGoogle Scholar
Gross, P., Julius, C., Schmelzer, E. & Hahlbrock, K. 1993. Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defense gene activation in infected, cultured parsley cells. EMBO Journal 12, 1735–44.CrossRefGoogle ScholarPubMed
Hahlbrock, K., Boudet, A. M., Chappell, J., Kreuzaler, F., Kuhn, D. N. & Ragg, H. 1983. Differential induction of mRNAs by light and elicitor in cultured plant cells. In Ciferri, O. & Dure, L. (Eds), Nato Advanced Studies Institute, Structure and function of plant genome pp. 1523. London: Chapman & Hall.CrossRefGoogle Scholar
Hahlbrock, K. & Scheel, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 40, 347–69.CrossRefGoogle Scholar
Heath, R. L. 1989. The biochemistry of ozone attack on the plasma membrane of plant cells. Recent Advances in Phytochemistry 21, 2954.Google Scholar
Jacobsen, A. 1987. Purification and fractionation of poly(A)+ RNA. In Berger, S. L. & Kimmel, A. R. (Eds), Methods in enzymology, Vol. 152, pp. 254–61. Orlando: Academic Press.Google Scholar
Keppler, L. D. & Baker, J. C. 1989. O2- initiated lipid peroxidation in a bacteria-induced hypersensitive reaction in tobacco cell suspensions. Phytopathology 79, 555–62.CrossRefGoogle Scholar
Keppler, L. D. & Novacky, A. 1987. The initiation of membrane lipid peroxidation during bacteria-induced hypersensitive reaction. Physiological and Molecular Plant Pathology 30, 233–45.CrossRefGoogle Scholar
Knogge, W., Kombrink, E., Schmelzer, E. & Hahlbrock, K. 1987. Occurence of phytoalexins and other putative defense-related substances in parsley plants. Planta 171, 279–87.CrossRefGoogle Scholar
Kuhn, D. N., Chappell, J., Boudet, A. & Hahlbrock, K. 1984. Induction of phenylalanine ammonialyase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proceedings of the National Academy of Science USA 81, 1102–6.CrossRefGoogle ScholarPubMed
Langebartels, C., Kerner, K., Leonardi, S., Schraudner, M., Trost, M., Heller, W. & Sandermann, H. 1991. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiology 95, 882–9.CrossRefGoogle ScholarPubMed
Lawton, M. A. & Lamb, C. J. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Molecular and Cellular Biology 7, 335–41.Google ScholarPubMed
Mazau, D. & Esquerre-Tugaye, M. T. 1986. Hydroxyproline-rich glycoprotein accumulation in the cell walls of plants infected by various pathogens. Physiological and Molecular Plant Pathology 29, 147–57.CrossRefGoogle Scholar
Murai, A. 1986. Phytoalexin chemistry and action. In Greenhalgh, R. & Roberts, T. R. (Eds), Pesticide science and biotechnology, Proceedings of the 6th international Congress of Pesticide Chemistry, Ottawa, pp. 81–8. Oxford: T. R. Blackwell Scientific Publications.Google Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. 1989. Molecular cloning. A laboratory manual, 1.29-1.30; 9.47-9.55. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sandermann, H., Schmitt, R., Heller, W., Rosemann, D. & Langebartels, C. 1989. Ozone-induced early biochemical reactions in conifers. In Longhurst, J. W. S. (Ed.) Acid deposition. Sources, effects and controls, 243–54. London: British Library.Google Scholar
Sanger, F., Nicklen, S. & Coulsen, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Science of the USA 74, 5463–7.CrossRefGoogle ScholarPubMed
Shah, D. M., Hightower, R. C. & Meagher, R. B. 1982. Complete nucleotide sequence of a soybean actin gene. Proceedings of the National Academy of Sciences of the USA 79, 1022–6.CrossRefGoogle ScholarPubMed
Skinner, M. K. & Griswold, M. D. 1983. Fluorographic detection of radioactivity in polyacrylamide gels with 2,5-diphenyloxazole in acetic acid and its comparison with existing procedures. The Biochemical Journal 209, 281–4.CrossRefGoogle ScholarPubMed
Schmelzer, E., Jahnen, W. & Hahlbrock, K. 1988. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proceedings of the National Academy of Science of the USA 85, 2989–93.CrossRefGoogle ScholarPubMed
Schmelzer, E., Kruger-Lebus, S. & Hahlbrock, K. 1989. Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. The Plant Cell 1, 9931001.CrossRefGoogle ScholarPubMed
Somssich, I. E., Schmelzer, E., Bollmann, J. & Hahlbrock, K. 1986. Rapid activation by fungal elicitor of genes encoding ‘pathogenesis-related’ proteins in cultured parsley cells. Proceedings of the National Academy of Science of the USA 83, 24722480.Google ScholarPubMed
Somssich, I. E., Schmelzer, E., Kawalleck, P. & Hahlbrock, K. 1988. Gene structure and in situ transcript localization of pathogenesis-related protein 1 b in parsley. Molecular and General Genetics 213, 93–8.CrossRefGoogle Scholar
Somssich, I. E., Bollmann, J., Hahlbrock, K., Kombrink, E. & Schulz, W. 1989. Differential early activation of defense-related genes in elicitor-treated parsley cells. Plant Molecular Biology 12, 227–34.CrossRefGoogle ScholarPubMed
Tingey, D. T. & Taylor, G. E. 1982. Variation in plant responses to ozone: a conceptual model of physiological events. In Unsworth, M. H. & Ormrod, D. P. (Eds) Effects of gaseous air pollutants in agriculture and horticulture, pp. 111–38. London: Butterworth.Google Scholar
Treshow, M. & Anderson, F. K. 1989. Plant stress from air pollution. New York: John Wiley.Google Scholar
Wu, S.-C. & Hahlbrock, K. 1992. In situ localization of phenylpropanoid-related gene expression in different tissues of light- and dark-grown parsley seedlings. Zeitschrift fur Naturforschung 47c, 591600.CrossRefGoogle Scholar