Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T01:08:50.658Z Has data issue: false hasContentIssue false

Composition and formation of flame cell caps: A substratum for the attachment of micro-organisms to sea horse epidermis

Published online by Cambridge University Press:  05 December 2011

J. Bereiter-Hahn
Affiliation:
AK Kinematische Zellforschung im Fachbereich Biologie der Johann Wolfgang, Goethe-Universität, Frankfurt am Main, West Germany
K. S. Richards
Affiliation:
Department of Biological Sciences, University of Keele, Keele, Staffs, England
L. Elsner
Affiliation:
AK Kinematische Zellforschung im Fachbereich Biologie der Johann Wolfgang, Goethe-Universität, Frankfurt am Main, West Germany
M. Voth
Affiliation:
AK Kinematische Zellforschung im Fachbereich Biologie der Johann Wolfgang, Goethe-Universität, Frankfurt am Main, West Germany
Get access

Synopsis

The epidermis of the sea horse Hippocampus kuda is characterised by flame cone cells, each of which protrudes 20-40 μm above the surface and is covered by a prominent mucous cap. Unlike normal surface cells, the mucoid caps can support epiphytic microbial growth.

Histochemically the mucous cap is a neutral mucopolysaccharide-protein complex possessing 1,2 glycol groups and SH-groups; acid mucopolysaccharides are absent. The acid mucopolysaccharide glycocalyx of unmodified surface cells is absent from the mucous cap surface.

Ultrastructurally two types of vesicle can be distinguished in flame cells. Type I is oval (0·3 × 0·6 um) with contents of medium electron density and occurs principally in mature flame cells. Type II, seen only in developing cells, is spherical (0·4 μm) and contains rod-like subunits characteristic of the cap mucous. Secretion is mediated by channels formed by smooth endoplasmic reticulum. Unmodified surface cells also secrete their vesicular contents, which resemble the Type I vesicles of flame cells and are similar to the goblet mucous vesicles of other fish, through similar channels.

Flame cell mucous caps, by virtue of their histochemistry, possible provide a suitable substratum for the adhesion and growth of epiphytes which in turn may afford protection against cnidarian nematocysts.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. M., 1976. Microplicae: characteristic ridge-like folds of the plasmalemma. J. Cell Biol., 68, 420429.Google Scholar
Bereiter-Hahn, J., and Egner, O., 1969. Ein Beitrag zur funktionellen Morphologie von Fischepidermiszellen. Verh. Dt. Zool. Ges., 32, 145152.Google Scholar
Bereiter-Hahn, J., and Elsner, L., 1976. Oberflächendifferenzierung der Fischaut: Zur functionellen Anatomie der Flammerzellen bei Seepferdchen (Hippocampus kuda Bleeker, Syngnathidae). Beitr. Elektr. Direktabb. Oberfl., 9, 505514.Google Scholar
Bereiter-Hahn, J., Osborn, M., Weber, K., and Vöth, M., 1979. Filament organization and formation of microrodiges at the surface offish epidermis. J. Ultrastruct. Res., 69, 316330.Google Scholar
Breipohl, W., Herberhold, C., and Kerschek, R., 1977. Microridge cells in the larynx of the male white rat. Investigations by reflection scanning electron microscopy. Arch. Oto-Rhino-Laryng., 215, 19.CrossRefGoogle ScholarPubMed
Bremer, H., 1972. Einige Untersuchungen zur Histochemie der sezernierenden Elemente der Teleostier-Epidermis. Acta Histochem., 43, 2840.Google Scholar
Chapman, G. B., and Dawson, A. B., 1961. Fine structure of the larval anuran epidermis, with special reference to the figures of Eberth. J. Biophys. Biochem. Cytol., 10, 425435.CrossRefGoogle Scholar
Epstein, M. A., 1957. The fine structural organisation of Rous tumour cells. J. Biophys. Biochem. Cytol., 3, 851857.CrossRefGoogle ScholarPubMed
Fishelson, L., 1973. Observations on skin structure and sloughing in the stone fish Synanceja verrucosa and related fish species as a functions adaptation to their mode of life. Z. Zellforsch., 140, 497508.CrossRefGoogle Scholar
Harris, J. E., and Hunt, S., 1975. The fine structure of the epidermis of two species of salmonid fish, the atlantic salmon (Salmo salar L.) and the brown trout (Salmo trutta L.). I. General organisation and filament-containing cells. Cell Tiss. Res., 157, 553565.Google Scholar
Hoyer, H., 1901. Über den Bau des Integuments von Hippocampus. Anz. Akad. Wiss. Krakau. Math. Nat. Cl., 3, 143146.Google Scholar
Kihlström, E., and Edebo, L., 1976. Association of viable and inactivated Salmonella typhimuhum 395 MS and MR 10 with HeLa cells. Infection and Immun., 14, 851857.CrossRefGoogle Scholar
Palade, G., 1975. Intracellular aspects of the process of protein synthesis. Science, N.Y., 189, 347–258.CrossRefGoogle ScholarPubMed
Pearse, A. G. E., 1968. Histochemistry. Theoretical and applied. Vol. 1, 3rd edn. London: Churchill.Google Scholar
Perers, L., Andaker, L., Edebo, L., Stendahl, O., and Tagesson, C., 1977. Association of some enterobacteria with the intestinal mucosa of mouse in relation to their partition in aqueous two-phase systems. Acta Path. Microbiol. Scand. B., 85, 308316.Google Scholar
Quay, W. B., 1972. Integument and the environment: Glandular composition, function, and evolution. Am. Zoologist, 12, 95108.Google Scholar
Rao, S. N., Mukherjee, T. M., and Williams, A. W., 1972. Quantitative variations in the disposition of the enteric surface coat in mouse jejunum. J. British Soc. Gastoenterology-GUT, 13, 3338.Google Scholar
Rauther, M., 1925. Die Syngnathiden des Golfes von Neapel. Fauna Flora Golf. Neapel, 9.Google Scholar
Schulze, F. E., 1869. Über cuticulare Bildungen und Verhornung von Epithelzellen bei den Wirbeltieren. Arch. Mikr. Anat., 5, 295316.CrossRefGoogle Scholar
Schwerdtfeger, W. K., 1978. The structure of teleost epidermis with special reference to new qualitative and quantitative data from the guppy, Poecilia reticulata Peters. Z. Mikrostk.-anat. Forsch., 92, 193205.Google Scholar
Schwerdtfeger, W. K., and Bereiter-Hahn, J., 1977. Glycocalyxbildung bei Teleosteern. Verh. Dt. Zool. Ges., 70, 286.Google Scholar
Weissengels, N., 1968. Der Einfluss der Gewebezüchtung auf die Differenzierungsform des endoplasmatischen Retilulums von Hühnerherzmyoblasten. Z. Zellforsch., 86, 113.Google Scholar
Whitear, M., 1970. The skin surface of bony fishes. J. Zool., Lond., 160, 437454.CrossRefGoogle Scholar
Whitear, M., 1977. A functional comparison between the epidermis of fish and of amphibians. Symp. Zool. Soc. Lond., 39, 291313.Google Scholar
Yamada, J., 1968. A study on the structure of surface cell layers on the epidermis of some teleosts. Ann. Zool. Jap., 41, 18.Google Scholar