Skip to main content Accessibility help
×
Home

Wiener processes on manifolds of maps

  • Peter Baxendale (a1)

Synopsis

The solutions of stochastic differential equations are used to construct Markov processes on the Banach manifold C(S, M) of continuous maps from a compact metric space S into a smooth complete finite dimensional Riemannian manifold M. In the special case where S is a single point the construction gives a large class of diffusion processes on the manifold M, including (under certain curvature conditions) the Brownian motion process.

Copyright

References

Hide All
1Aronszajn, N.. La théorie des noyaux reproduisant et ses applications. Math. Proc. Cambridge Philos. Soc. 39 (1943), 133153.
2Baxendale, P.. Gaussian measures on function spaces. Amer. J. Math. 98 (1976), 891952.
3Cantor, M.. Sobolev inequalities for Riemannian bundles. Bull. Amer. Math. Soc. 80 (1974), 239243.
4Chen, B. Y.. Geometry of submanifolds (New York: Dekker, 1973).
5Clark, J. M. C.. An introduction to stochastic differential equations on manifolds. In Geometric methods in systems theory (ed. Mayne, D. Q. and Brockett, R. W.) (Amsterdam: Riedel, 1973).
6Debiard, A., Gaveau, B. and Mazet, E.. Temps d'arrêt des diffusions riemanniennes. C.R. Acad. Sci. Paris Sér A 278 (1974), 723725 and 795–798.
7Dudley, R. M.. Sample functions of the Gaussian process. Ann. Probab. 1 (1973), 66103.
8Dudley, R. M., Feldman, J. and Le Cam, L.. On seminorms and probabilities and abstract Wiener spaces. Ann. of Math. 93 (1971), 390408.
9Eells, J. and Elworthy, K. D.. Stochastic dynamical systems. Control theory and topics in functional analysis, Vol. III (Vienna: International Atomic Energy Agency, 1976).
10Elworthy, K. D.. Measures on infinite-dimensional manifolds. In Functional integration and its applications (ed. Arthurs, A.M.) (Oxford Univ. Press, 1975).
11Fernique, X.. Régularité de processus gaussiens. Invent. Math. 12 (1971), 304320.
12Gihman, I. I. and Skorohod, A. V.. Stochastic differential equations (Berlin: Springer, 1972).
13Gross, L.. Abstract Wiener spaces. Proc. Fifth Berkeley Symp. in Math. Stat. and Probability (1965), Vol. 2, Part 1, 3140.
14Gross, L.. Potential theory on Hilbert space. J. Funct. Anal. 1 (1967), 123182.
15Gross, L.. Abstract Wiener measure and infinite dimensional potential theory. In: Lectures in Modem Analysis and Applications II. Lecture Notes in Mathematics 140, 84116 (Berlin: Springer, 1970).
16Itô, K.. On stochastic differential equations on a differentiable manifold 1. Nagoya Math. J. 1 (1950), 3547.
17Itô, K.. On stochastic differential equations on a differentiable manifold 2. Mem. Coll. Sci. Kyoto Univ. A 28 (1953), 8285.
18Jørgensen, E.. The central limit problem for geodesic random walks. Z. Wahrsch. Verw. Gebiete 32 (1975). 164.
19Kallianpur, G.. Abstract Wiener processes and their reproducing kernel Hilbert spaces. Z Wahrsch. Verw. Gebiete 17 (1971), 113123.
20Kushner, H. J.. On the weak convergence of interpolated Markov chains to a diffusion. Ann. Prob. 2 (1974), 4050.
21Mc, H. P.Kean. Stochastic integrals (New York: Academic, 1969).
22Molchanov, S. A.. Strong Feller property of diffusion processes on smooth manifolds. Theory Probab. Appl. 13 (1968), 471475.
23Nelson, E.. An existence theorem for second order parabolic equations. Trans. Amer. Math. Soc. 88 (1958), 414429.
24Palais, R. et al. Seminar on the Atiyah-Singer Index Theorem. Annals of Mathematical Studies, No. 57 (Princeton: Princeton Univ. Press 1965).
25Parthasarathy, K. R.. Probability measures on metric spaces (New York: Academic, 1967).
26Priouret, P.. Processus de diffusion et equations differentielles stochastiques. Ecole d'Eté de Probabilités de Saint Flour III. Lecture Notes in Mathematics 390 (Berlin: Springer, 1974).
27Sato, H.. Gaussian measure on a Banach space and abstract Wiener measure. Nagoya Math. J. 36 (1969), 6581.
28Skorohod, A. V.. A note on Gaussian measures in Banach space. Theory Probab. Appl. 15 (1970), 519520.
29Totoki, H.. A method of construction of measures on function spaces and its applications to stochastic processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 15 (1961), 178190.

Wiener processes on manifolds of maps

  • Peter Baxendale (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed