Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T20:07:25.563Z Has data issue: false hasContentIssue false

Some geometric properties of the set of generalized Young functionals

Published online by Cambridge University Press:  14 November 2011

Martin Kružík
Affiliation:
Institute of Information Theory and Automation, Academy of Sciences, Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic
Tomáš Roubíček
Affiliation:
Mathematical Institute, Charles University, Sokolovská 83, CZ-186 00 Praha 8, Czech Republic and Institute of Information Theory and Automation, Academy of Sciences, Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic

Abstract

This paper studies geometric properties, in particular extreme points and rays, of various generalizations of Young measures. Applications of the knowledge of extreme points are illustrated on existence results for optimal control problems and on various convergence results for Young measures by using the Choquet theory.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Balder, E.. New existence results for optimal controls in the absence of convexity: the importance of extremality. SIAM J. Control Analysis 32 (1994), 890916.CrossRefGoogle Scholar
2Ball, J. M.. A version of the fundamental theorem for Young measures. In PDEs and continuum models of phase transition (ed. Rascle, M., Serre, D. and Slemrod, M.). Lecture Notes in Physics vol. 344, pp. 207215 (Berlin: Springer, 1989).CrossRefGoogle Scholar
3Ball, J. M. and Murat, F.. Remarks on Chacon's biting lemma. Proc. Am. Math. Soc. 107 (1989), 655663.Google Scholar
4Bauer, H.. Minimalstellen von Funktionen und Extremalpunkte. Archiv Math. 9 (1958), 389393; 11 (1960), 200–205.CrossRefGoogle Scholar
5Bishop, E. and Leeuw, K. de. The representation of linear functionals by measures on the sets of extreme points. Ann. Inst. Fourier 9 (1959), 305331.CrossRefGoogle Scholar
6Choquet, G.. La théorie des représentations intégrales dans les esembles convexes compacts. Ann. Inst. Fourier 10 (1960), 334344.CrossRefGoogle Scholar
7Choquet, G.. Lectures on analysis, vol. II (New York: W. A. Benjamin, Inc., 1969).Google Scholar
8Choquet, G. and Meyer, P. A.. Existence et unicité des représentations intégrales dans les convexes compacts quelconques. Ann. Inst. Fourier 13 (1963), 139154.CrossRefGoogle Scholar
9DiPerna, R. J. and Majda, A. J.. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987), 667689.CrossRefGoogle Scholar
10Halmos, P. R.. Measure theory (New York: Springer, 1974).Google Scholar
11Jacobs, K.. Measure and integral (New York: Academic Press, 1978).Google Scholar
12Köthe, G.. Topological vector spaces I, 2nd edn (Berlin: Springer, 1983).CrossRefGoogle Scholar
13Klee, V. L.. Extremal structure of convex sets. Archiv Math. 8 (1957), 234240.CrossRefGoogle Scholar
14Krein, M. and Milman, D.. On extreme points of regularly convex sets. Studia Math. 9 (1940), 133138.CrossRefGoogle Scholar
15Kristensen, J.. Lower semicontinuity of variational integrals. PhD thesis, Mathematics Institute of Technology, University of Denmark, Lungby, 1994.Google Scholar
16Kružík, M. and Roubíček, T.. Explicit characterization of Lp-Young measures. J. Math. Analysis Appl. 198 (1996), 830843.CrossRefGoogle Scholar
17Kružík, M. and Roubíček, T.. On the measures of DiPerna and Majda. Mathematica Bohemica 122 (1997), 383399.CrossRefGoogle Scholar
18Pedregal, P.. Parametrized measures and variational principles (Basel: Birkhäuser, 1997).CrossRefGoogle Scholar
19Phelps, P. R.. Lectures on Choquet's theorem (Princeton: D. van Nostrand, 1966).Google Scholar
20Rainwater, J.. Weak convergence of bounded sequences. Proc. Am. Math. Soc. 14 (1963), 999.Google Scholar
21Roubíček, T.. Relaxation in optimization theory and variational calculus (Berlin: W. de Gruyter, 1997).CrossRefGoogle Scholar
22Roubíček, T.. Nonconcentrating generalized Young functionals. Commentationes Math. Univ. Carolinae 38 (1997), 9199.Google Scholar
23Schonbek, M. E.. Convergence of solutions to nonlinear dispersive equations. Commun. Partial Diffl Eqns 7 (1982), 9591000.Google Scholar
24Slaby, M.. Strong convergence of vector valued pramarts and submarts. Prob. Math. Statist. 5 (1985), 187196.Google Scholar
25Valadier, M.. Young measures. In Methods on nonconvex analysis (ed. Cellina, A.). Lecture Notes in Mathematics, vol. 1446, pp. 152188 (Berlin: Springer, 1990).CrossRefGoogle Scholar
26Young, L. C.. Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Lett. Varsovie Classe III 30 (1937), 212234.Google Scholar