Skip to main content Accessibility help
×
Home

Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions

  • Charles T. Fulton (a1)

Synopsis

In this paper I extend the analysis of regular problems containing the eigenvalue parameter in the boundary conditions given by Walter (1973) and myself (1977) to singular problems which involve the eigenvalue parameter linearly in a regular or a limit-circle boundary condition at the left endpoint. The formulation of the limit-circle boundary conditions follows that given in another paper by the present author in 1977, and has the advantage that a λ-dependent boundary condition at a regular endpoint becomes a special case of a λ-dependent boundary condition at a limit-circle endpoint. The simplicity of the spectrum is also built into the formulation given, and the spectral function is shown to have bounded total variation over (−∞, ∞) which is known in terms of the parameters of the λ-dependent boundary condition independently of the limit-circle/limit-point classification at the right endpoint. The theory is applied to the constant coefficient equation in [0, ∞) and the Bessel equation of order zero in (0, ∞), explicit formulae for the spectral function being obtained in each case. Finally, the question is posed as to whether the classical Weyl theory for problems not involving λ in the boundary conditions can also be formulated so as to involve spectral functions having bounded total variation.

Copyright

References

Hide All
1Akhiezer, N. I. and Glasmann, I. M.. Theorie der linearen Operatoren im Hilbert Raum (5th edn) (Berlin: Akademie Verlag, 1968).
2Atkinson, F. V.. Discrete and Continuous Boundary Problems (New York: Academic Press, 1964).
3Breiman, L.. Probability (Reading, Mass.: Addison-Wesley, 1968).
4Bognar, J.. Indefinite inner product spaces (New York: Springer, 1974).
5Butzer, P. L. and Berens, H.. Semi-Groups of operators and approximation (Berlin: Springer, 1967).
6Coddington, E. A.. Self-adjoint subspace extensions of non-densely defined symmetric operators. Advances in Math. 14 (1974), 309332.
7Coddington, E. A.. Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions. Advances in Math. 15 (1975), 140.
8Coddington, E. A. and Dijksma, A.. Self-adjoint subspaces and eigenfunction expansions for ordinary differential subspaces. J. Differential Equations 20 (1976), 473526.
9Coddington, E. A. and Levinson, N.. Theory of ordinary differential equations (New York: McGraw-Hill, 1955).
10Dijksma, A. and de Snoo, H. S. V.. Eigenfunction expansions for nondensely defined differential operators. J. Differential Equations 17 (1975), 198219.
11Dijksma, A. and de Snoo, H. S. V.. Self-adjoint extensions of symmetric subspaces. Pacific J. Math. 54 (1974), 71100.
12Dijksma, A. and de Snoo, H. S. V.. Integral transforms and a class of singular S-hermitian eigenvalue problems. Manuscripta Math. 10 (1973), 129139.
13Cohen, D. S.. An integral transform associated with boundary conditions containing an eigenvalue parameter. SIAM J. Appl. Math. 14 (1966), 11641175.
14Donoghue, W. F. Jr., Monotone matrix functions and analytic continuation (New York: Springer, 1974).
15Dunford, N. and Schwartz, J. T.. Linear operators II (New York: Interscience, 1963).
16Everitt, W. N.. On a property of the m-coefficient of a second-order linear differential equation. J. London Math. Soc. 4 (1972), 443457.
17Feller, W.. The parabolic differential equations and the associated semigroups of transforms. Ann. of Math. 55 (1952), 468519.
18Feller, W.. Generalized second-order differential operators and their lateral conditions. Illinois J. Math. 1 (1957), 459504.
19Feller, W.. On differential operators and boundary conditions. Comm. Pure Appl. Math. 8 (1955), 203216.
20Feller, W.. Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954), 131.
21Feller, W.. Two singular diffusion problems. Ann. of Math. 54 (1951), 173182.
22Feller, W.. An Introduction to Probability Theory and its Applications II (New York: Wiley, 1966).
23Fine, H. B.. College Algebra (New York: Ginn, 1904).
24Fulton, C.. Parametrizations of Titchmarsh's m(λ)-functions in the limit circle case. Trans. Amer. Math. Soc. 229 (1977), 5163.
25Fulton, C.. Parametrizations of Titchmarsh's m(λ)-functions in the limit circle case. (R. W. T. H. Aachen: Dissertation, 1973).
26Fulton, C.. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 293308.
27Fulton, C. and Pruess, S.. Numerical methods for a singular eigenvalue problem with eigenparame-ter in the boundary conditions. J. Math. Anal. Appl. 71 (1979), 431462.
28Glazman, I. M.. Direct methods of qualitative spectral analysis of singular differential operators (Engl. transl.) (Jerusalem: Monson, 1965).
29Hartman, P.. Differential equations with nonoscillatory eigenfunctions. Duke Math. J. 15 (1948), 697709.
30Hellwig, G.. Differential operators of mathematical physics (Engl. transl.) (Reading, Mass.: Addison-Wesley, 1967).
31Hellwig, G.. Anfangs- und Randwertprobleme bei partiellen Differentialgleichungen von wechselndem Typus auf den Rändern. Math. Z. 58 (1953), 337357.
32Hellwig, G.. Über die Anwendung der Laplace-transformation auf Randwert-probleme. Math. Z. 66 (1957), 371388.
33Hellwig, G.. Über die Anwendung der Laplace-transformation auf Ausgleichsprobleme. Math. Nachr. 18 (1958), 281291.
34Hille, E.. Lectures on ordinary differential equations (Reading, Mass: Addison-Wesley, 1969).
35Jörgens, K. and Rellich, F.. Eigenwerttheorie gewöhnlicher Differentialgleichungen (Berlin: Springer, 1976).
36Kac, I. S. and Krein, M. G.. R-Functions-Analytic functions mapping the upper halfplane into itself. Amer. Math. Soc. Transl. (2) 103 (1974), 118 (Engl. transl, of Supplement I of the Russian translation of reference [2], Moscow, 1968).
37Kodaira, K.. The eigenvalue problem for ordinary differential equations of the second order and Heisenberg's theory of S-matrices. Amer. J. Math. 71 (1949), 921945.
38Krall, A.. Linear methods of applied analysis (Reading, Mass.: Addison-Wesley, 1973).
39Langer, R. E.. A problem in diffusion or in the flow of heat for a solid in contact with a fluid. Tôhoicu Math. J. 35 (1932), 360375.
40Levinson, N.. A simplified proof of the expansion theorem for singular second order linear differential equations. Duke Math. J. 18 (1951), 5771.
41Levitan, B. M.. Expansion in characteristic functions of differential equations of the second order (Moscow: GITTL, 1950 (Russian)).
42Levitan, B. M. and Sargsjan, I. S.. Introduction to spectral theory: Self-adjoint ordinary differential operators (Providence, R. I.: A. M. S. Transl., 1975).
43Levitan, B. M.. On the asymptotic behaviour of the spectral function of a self-adjoint differential equation of the second order. Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 325352; Engl. transl., Amer. Math. Soc. Transl. (2) 101 (1973), 192–221.
44Levitan, B. M.. On the asymptotic behaviour of the spectral function of a self-adjoint differential equation of the second order and on eigenfunction expansions, II. Izv. Akad. Nauk SSSR Ser. Mat 19 (1955), 3358; Engl. transl., Amer. Math. Soc. Transl (2) 110 (1977), 165–188.
45Loeve, M.. Probability theory (2nd edn) (Princeton: Van Nostrand, 1960).
46Naimark, M. A.. Linear differential operators II (New York: Ungar, 1968).
47Neumann, F.. On a problem of transformations between limit-circle and limit-point differential equations. Proc. Roy. Soc. Edinburgh Sect. A 72 (1975), 187193.
48Niessen, H. D.. Singulare S-hermitesche Rand-eigenwertprobleme. Manuscripta Math. 3 (1970), 3568.
49Niessen, H. D.. Zum verallgemeinerten zweiten Weylschen Satz. Arch. Math. 22 (1971), 648656.
50Niessen, H. D. and Schneider, A.. Integraltransformationen zu singulären S-Hermiteschen Randeigenwertproblemen. Manuscripta Math. 5 (1971), 133145.
51Niessen, H. D.. Greensche matrix und die Formel von Titchmarsh-Kodaira für singulare S-hermitesche Eigenwertprobleme. J. Reine Angew. Math. 261 (1973), 164193.
52Odhnoff, Jan. Operators generated by differential problems with eigenvalue parameter in equation and boundary condition. Meddn Lunds Univ. Mat. Semin. 14 (1959).
53Pleijel, A.. A survey of spectral theory for pairs of ordinary differential operators. Lecture Notes in Mathematics 448, 256272 (Berlin: Springer, 1975).
54Rellich, F.. Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math. Ann. 122 (1951), 343368.
55Schneider, A.. Eine Bemerkung zum Weyl-Stoneschen Eigenwertproblem. Arch. Math. 17 (1966), 352358.
56Schneider, A.. Untersuchungen über singulare reelle S-hermitesche Differentialgleichungssysteme im Normalfall. Math. Z. 107 (1968), 271296.
57Schneider, A.. Weitere Untersuchungen über singulare reelle S-hermitesche Differentialgleichungssysteme im Normalfall. Math. Z. 109 (1969), 153168.
58Schneider, A.. Die Greensche matrix S-hermitescher Rand-eigenwertprobleme im Normalfall. Math. Ann. 180 (1969), 307312.
59Schneider, A.. Zum Entwicklungssatz bei reellen singulären Differentialgleichungs-systemen. Arch. Math. 21 (1970), 192197.
60Schneider, A.. A note on eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 136 (1974), 163167.
61Scott, W. F.. On eigenfunction expansions of second-order ordinary differential equations. J. London Math. Soc. 4 (1972), 551559.
62Sears, D. B.. Integral transforms and eigenfunction theory. Quart. J. Math. Oxford 5 (1954), 4758.
63Titchmarsh, E. C.. Eigenfunction expansion associated with second order differential equations I (2nd edn) (London: Oxford Univ. Press, 1962).
64Titchmarsh, E. C.. Eigenfunction expansions associated with second order differential equations II (London: Oxford Univ. Press, 1958).
65Walter, J.. Regular eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 133 (1973), 301312.
66Weidmann, J.. Lineare Operatoren in Hilberträumen (Stuttgart: Teubner, 1976).
67Weyl, H.. Über gewöhnliche lineare Differentialgleichungen mit Singulären Stellen und ihre Eigenfunktionen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1910), 442467.
68Widder, D. V.. The Laplace Transform (2nd edn) (Princeton: Univ. Press, 1946).
69Wray, S. D.. On Weyl's Function m(λ). Proc. Roy. Soc. Edinburgh. Sect. A 74 (1976), 4148.
70Yosida, K.. On Titchmarsh-Kodaira's formula concerning Weyl-Stone's eigenfunction expansion. Nagoya Math. J. 1 (1950), 4958.
71Yosida, K.. Lectures on differential and integral equations (New York: Interscience, 1960).
72Zecca, P.. Su un problema al contorno per l'equazione Δu + λu = 0. Rend. Accad. Sci. Fis. Mat. Napoli 33 (1966), 279303.

Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions

  • Charles T. Fulton (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed